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Abstract 

Composite materials are widely used in many engineering fields owing to their 

high stiffness-to-weight, strength-to-weight ratios, low thermal expansion, enhanced 

fatigue life and good corrosive resistance. Among them, laminated composite beams 

are popular in application and attract a huge attention from reseacher to study the 

their structural behaviours. Many theories are proposed for the bending, buckling and 

vibration analysis. They can be divided into classical beam theory (CBT), first-order 

beam theory (FOBT), higher-order beam theory (HOBT) and quasi-three dimension 

(quasi-3D) beam theory. It should be noted that classical continuum mechanics 

theories are just suitable for macro beams. For analysing microbeams, researchers 

proposed many non-classical theories. Among them, the modified couple stress 

theory (MCST) is the most popular and commonly applied owing to its simplicity in 

formulation and programming. In order to accurately predict behaviours of beams, a 

large number of methods are developed. Numerical approaches are used increasingly, 

however, analytical methods are also used by researchers owing to their accuracy and 

efficiency. Among analytical approaches, Ritz method is the most general one, which 

accounts for various boundary conditions, however, it has seldom been used to 

analyse the bending, buckling and free vibration behaviours of beams. This is also 

the main motivation of this study. 

This dissertation focuses on propsing new approximation functions to analyse 

laminated composite beams with various cross-sections and boundary conditions. 

The displacement field is based on the FOBT, HOBT and quasi-3D theories. Size-

dependent effect for microbeams is investigated using the MCST. Poisson’s effect is 

considered by integrating in the constitutive equations. The governing equations of 

motion are derived from Lagrange’s equations. Numerical results for beam with 

various boundary conditions are presented and compared with existing ones available 

in the literature. The effects of fiber angle, length-to-height ratio, material anisotropy, 

shear and normal strains on the displacements, stresses, natural frequencies, mode 

shape and buckling loads of the composite beams are investigated. Some of numerical 
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results are presented at the first time and can be used as the benchmark results for 

numerical methods. Besides, a study on efficacy of approximation functions for 

analysis of laminated composite beams with simply-supported boundary conditions 

is carried out. 
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 Chapter 1.  INTRODUCTION 

1.1. Composite material 

1.1.1. Fiber and matrix 

A composite material, which is combined of two or more materials, leads to 

improve properties such as stiffness, strength, weight reduction, corrosion resistance, 

thermal properties... than those of the individual components used alone. It is made 

from a reinforcement as fiber and a base as matrix, and is divided into commonly 

three different types [1]: 

(1) Fibrous materials: fibers of one material and matrix of another one (Fig. 1.1a). 

(2) Particulate composites: macro size particles of one material and matrix of another 

one (Fig. 1.1b). 

(3) Laminate composites: made of several layers of different materials, including of 

the first two types.  

Fiber and particle, which are harder, stronger and stiffer than matrix, provide the 

strength and stiffness. Matrix can be classified by strength and stiffness such as 

polymer (low), metal (intermediate) or ceramic (high but brittle). The matrix 

maintains the fibers in the right angle, spacing and protects them from abrasion and 

the environment.  

 

a. Fiber Composite 

 

b. Particulate Composite 

Figure 1.1. Composite material classification [1] 

1.1.2. Lamina and laminate 
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A fiber-reinforced lamina consists of many fiber embedded in a matrix material. 

The fiber can be continuous or discontinuous, woven, unidirectional, bidirectional or 

randomly distributed. (Fig.1.2) 

 

 

Figure 1.2. Various types of fiber-reinforced composite lamina [1] 

A laminate is a collection of lamina with various orientations which are stacked 

to achieve the desired stiffness and thickness. The layers are usually bonded together 

with the same matrix material as that in a lamina. The stiffness and strength of the 

laminate can be tailored to meet requirements by selecting the lamination scheme and 

material properties of individual lamina. 

 

 

Figure 1.3. A laminate made up of laminae with different fiber orientations [1] 

1.1.3. Applications 
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In recent years, composite materials are widely used in many fields of civil, 

aeronautical and mechanical engineering. The most well-known advantages of these 

materials are high stiffness-to-weight and strength-to-weight ratios, low thermal 

expansion, enhanced fatigue life and good corrosive resistance. 

 

Figure 1.4. Composite material applied in engineering field 1  

 

Figure 1.5. Material used in Boeing 787 2 

1.2. Review 

                                                      
1 https://www.slideshare.net/NAACO/vat-lieu-composite-frp-trong-xay-dung 
2 https://www.1001crash.com/index-page-composite-lg-2.html 
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In this section, a general literature review on composite beams will be performed. 

Next, objectives of thesis are presented. Finally, theoretical formulation and 

constitutive laws of laminated composite beams are established.  

1.2.1. Literature review 

In order to use composite materials in practice, the available literatures indicate 

that a large number of studies have been conducted to analyse their structural 

responses. Beam theories, constitutive laws and methods are proposed in order to 

predict vibration, buckling and bending behaviours of beams. In this section, a bief 

review study for laminated composite beams is presented. More review details for 

specific topic are available in the beginning of each chapter.  

For composite beam models, a literature review on the composite beam theories 

can be seen in the previous works of Ghugal and Shimpi [2]. Based on equivalent 

single layer theories, beam theories can be divided into main categories: classical 

beam theory, first order beam theory, higher-order beam theory and quasi-3D beam 

theory. The classical beam theory neglects transverse shear strain effects, and 

therefore it is only suitable for thin beams. The first order shear deformation theory 

accounts for the transverse shear strain effect, however it requires a shear correction 

factor to correct inadequate distributions of the transverse shear stresses through its 

thickness. In order to overcome this problem, the higher-order beam theory is 

proposed by using distribution functions of transverse shear stresses. However, this 

theory ignores transverse normal strain effect, and therefore quasi-3D beam theory is 

presented. It can be seen that the accuracy of beam responses depends on the choices 

of appropriate theories, and quasi-3D beam theory is the most general one. The 

review work of Ghugal and Shimpi [2] also indicates that Poisson’s effect on 

behaviours of laminated composite beams is not paid much attention. Moreover, 

when the behaviours of structures are considered at a small scale, the experimental 

studies showed that the size effect is significant to be accounted, that led to the 

development of Eringen’s nonlocal elasticity theory [3] and strain gradient theory [4-

6]. Based on this approach, many studies are investigated and applied for analysis of 
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composite microbeam [7-13]. The available literature indicate that studies mainly 

focus on cross-ply microbeams. Therefore, the study of micro general laminated 

composite beams with arbitrary lay-ups is necessary. 

Furthermore, composite materials are applied for thin-walled structures with 

different sections, many studies are developed based on the thin-walled structures 

theory. Vlasov [14] proposed a thin-walled structure theory for isotropic materials. 

Bauld and Tzeng [15] expanded Vlasov’s theory for buckling analysis of laminated 

composite thin-walled rods in which the authors analysed linear and nonlinear 

responses of laminated composite beams with open sections. Song and Librescu [16] 

investigated dynamic responses of laminated composite beams with arbitrary 

sections. Lee and Kim [17, 18] presented a general model to predict vibration and 

buckling responses of laminated composite thin-walled beams with I-sections by 

classical beam theory. It is clear that shear deformation effects on behaviours of thin-

walled composite beams is still limited. 

For computational methods, many computational methods have been developed 

in order to predict accurately responses of composite structures, namely, analytical, 

numerical and semi-numerical. The nature of these methods has been either exact or 

approximate. For numerical method, finite element method (FEM) is the most widely 

used numerical method for the free vibration, buckling and bending analysis of 

composite beams [19-28]. In addition, finite difference method [29, 30], Chebyshev 

collocation technique [31], dynamic stiffness matrix method [32] are also used to 

predict behaviours of beams. In recent year, isogeometric analysis [33, 34] attracted 

an interest of many researchers. This thesis will focus more details on analytical 

solutions. Among them, Navier procedure can be seen as the simplest one. Although 

this method is only suitable for simply supported boundary condition, it has 

widespread used by many authors owing to its simplicity [35, 36]. Other analytical 

approaches have been investigated for analysis of composite beams, including 

differential quadrature method (DQM) [37, 38], Galerkin method [39-41] or 

differential transform method [42, 43].  The Ritz method, which mainly uses in this 
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thesis, is the most general one which accounts for various boundary conditions.  It is 

a variational approach in which the shape functions are chosen to approximate the 

unknown displacement fields. The displacement functions should be complete in the 

function space, and inappropriate choices of the unknown functions may cause 

numerical instabilities and slow convergence rates. The available literatures indicated 

that polynomial and orthogonal polynomial functions are used commonly for 

laminated composite beams. The polynomial functions usually do not satisfy the 

boundary conditions. Therefore, the penalty method or langrage multiplier method is 

used to compose the boundary conditions [44, 45]. This leads to an increase in the 

dimension of the stiffness and mass matrices and thus causes computational costs. 

The orthogonal polynomial functions overcome this drawback by satisfying the 

specific boundary conditions [46-48]. However, these functions have seldom been 

used to analyse bending behaviour of laminated composite beams. Therefore, it can 

be seen that there is a need for further studies about Ritz method for beam problems. 

In Vietnam, the behaviour analysis of composite structures have attracted a 

number of researches. Nguyen-Xuan et al. [49-52], Nguyen et al. [53-55] analyse 

behaviours of composite plate. These studies focus on the development of advanced 

numerical methods such as the FEM, mesh-less method, isogeometry method and 

optimization theory of structures. Nguyen et al. [56-59] developed analytical methods 

for analysis of composite plates and shells with various geometric shapes and loading 

conditions. Tran et al. [60, 61] carried out some experimental studies on composite 

structures. Hoang et al. [62, 63] studied responses of functionally graded plates and 

shells under thermo-mechanical loads. Nguyen et al. [64, 65] investigated behaviors 

of functionally graded beams by the FEM under some different geometric and loading 

conditions. It is interesting that researchers in Vietnam have not paid much attention 

to laminated composite beam problems, especially composite thin-walled beams yet. 

1.2.2. Objectives of the thesis 

The literature review on the behaviours of composite beams shows that Ritz 

method is efficient to analyse the behaviours of composite beams with various 
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boundary conditions, however, the number of researches used this method is still 

limited. Therefore, developing the simple, effective and accurate approximation 

functions to solve structural behaviours of composite beams with various cross-

sections is one of the primary motivations of this study. In addition, the available 

literature indicate that effects of Poisson ratio, normal strain, size dependent on 

behaviours of composite beams are not well-investigated. The main contents of this 

thesis include: 

- Analyse free vibration, buckling and static of laminated composite beams 

using HOBT. 

- Analyse free vibration, buckling and static of laminated composite beams 

using quasi-3D theory. 

- Analyse free vibration, buckling and static of general micro laminated 

composite beams using modified couple stress theory. 

- Analyse free vibration, buckling and static of thin-walled laminated composite 

beams using FOBT. 

- Appraise and select approximation functions for analysis of laminated 

composite beams. 

1.2.3. Beam theory 

A large number of beam theories are developed to analyse the laminated 

composite beams. They can be divided into following categories: layer-wise theories 

(LWT) [66, 67], equivalent single layer theories (ESLT) [20, 35, 36, 68, 69], zig-zag 

theories (ZZT) [70-72], Carrera’s Unified Formulation (CUF) [73, 74]… in which 

the ESLT are widely used owing to their simplicity in formulation as well as 

programming. To describe beam theories, the following coordinate system (Fig. 1.6) 

is introduced. The x-, y- and z-axis are taken along the length, width and height of the 

beam, respectively. 
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Figure 1.6. Geometry and coordinate of a rectangular laminated composite beam. 

For a general beam theory, the axial and transverse displacements are presented 

as products of two sets of seperated unknown functions, namely the z-variation and 

x-variation.  

 2 3
0 1 2 3( , , ) ( , ) ( , ) ( , ) ( , ) ...u x z t u x t zu x t z u x t z u x t      (1.1) 

 2
0 1 2( , , ) ( , ) ( , ) ( , ) ...w x z t w x t zw x t z w x t     (1.2) 

The most simple and commonly used beam theory is the Euler-Bernoulli or 

classical beam theory (CBT) [75], which is based on the displacement field: 

 0
0

( , )
( , , ) ( , )

w x t
u x z t u x t z

x


 


 (1.3) 

 0( , , ) ( , )w x z t w x t  (1.4) 

where 0u  and 0w  are the axial and vertical displacements at mid-plane of the beam, 

respectively. The CBT is widely used for thin beams because it ignored shear 

deformation effect. In order to consider this effect, Timoshenko’s beam theory or the 

first order beam theory (FOBT) [76-78] is presented: 

 0 1( , , ) ( , ) ( , )u x z t u x t zu x t   (1.5) 

 0( , , ) ( , )w x z t w x t  (1.6) 

where 1u   denotes rotation of a transverse normal about the y-axis. FOBT requires a 

shear correction factor, which depends not only on the material and geometric 

parameters, but also on the boundary conditions and loading. In general, the 

determination of shear correction factor is a challenging task. For this reason,  higher-
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order beam theories (HOBT) have been developed. Many researcher ([69, 79-82]) 

proposed a third-order beam theory, which based on the displacement field: 

 2 3
0 1 2 3( , , ) ( , ) ( , ) ( , ) ( , )u x z t u x t zu x t z u x t z u x t     (1.7) 

 0( , , ) ( , )w x z t w x t  (1.8) 

By imposing traction-free boundary condition on the top and bottom face of the beam, 

Eqs. (1.7) and (1.8) lead to:  

 
3 3

0
0 12 2

4 4
( , , ) ( , ) ( , )

3 3

wz z
u x z t u x t z u x t

h h x

  
    

 
 (1.9) 

 0( , , ) ( , )w x z t w x t  (1.10) 

The displacement field in Eqs. (1.9) and (1.10) is known as Reddy’s third-order beam 

theory [81] . Besides, many researchers published refined high-order theories, which 

represent the higher-order variation of axial displacement by using ( )f z : 

 0
0 1( , , ) ( , ) ( ) ( , )

w
u x z t u x t z f z u x t

x


  


 (1.11) 

 0( , , ) ( , )w x z t w x t  (1.12) 

It should be noted that ( )f z have to meets the traction-free boundary condition of 

beams. Some of shear functions are presented in Table 1.1.  

It can be observed that the HOBT neglected transverse normal strain. To take into 

account this strain, quasi-3D theories [36, 83-85] have been developed based on the 

higher-order variations of both axial and transverse displacement: 

 2 3
0 1 2 3( , , ) ( , ) ( , ) ( , ) ( , )u x z t u x t zu x t z u x t z u x t     (1.13) 

 2
0 1 2( , , ) ( , ) ( , ) ( , )w x z t w x t zw x t z w x t    (1.14) 

where 1( , )w x t and 2 ( , )w x t  are additional higher-order terms.  

By using traction-free boundary condition on the top and bottom face of the beam, 

Eqs. (1.13) and (1.14) lead to:  

 2 3 01 2
0 1 12

1 4 1
( , , ) ( , ) ( , ) ( , )

2 3 3

ww w
u x z t u x t zu x t z z u x t

x h x x

    
            

 (1.15) 

 2
0 1 2( , , ) ( , ) ( , ) ( , )w x z t w x t zw x t z w x t    (1.16) 
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In recent year, researchers [35, 86, 87] also proposed various quasi-3D theories which 

used ( )f z  in displacement field: 

 0
0 1( , , ) ( , ) ( ) ( , )

w
u x z t u x t z f z u x t

x


  


 (1.17) 

 0 , 1( , , ) ( , ) ( ) ( , )zw x z t w x t f z w x t   (1.18) 

Table 1.1. Shear variation functions ( )f z  

Model ( )f z  

Kaczkowski [88], Panc [89], 

Reissner [90] 

3

2

5 5

4 3

z z

h
  

Levinson [91], Murthy [92] , 

Reddy [81] 

3

2

4

3

z
z

h
  

Nguyen et al. [93] 
3 5

2 4

7 2 2

8

z z z

h h
   

Arya et al. [94]  sin
z

h

 
 
 

 

Soldatos [95]  
1

sinh cosh
2

z
h z

h

   
   

   
 

Karama et al. [96] 
2

2
z

hze
 

  
   

Thai et al. [97]  1sinh sin
z

h

   
  
  

 

Nguyen et al. [98] 
3

1

3

16
cot

15

h z

z h
  

 
 

 

Nguyen et al. [99] 
3

1

2 2

8
sinh , 1

3 4

rz rz
z r

hh r

  
   

 
 

 

 

1.2.4. Constitutive relation 

The stress-strain relations for laminated composite beams are derived from the 

general three-dimensional state of stress and strain for an orthotropic ply. The 
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constitutive relations for the thk -ply of a laminated orthotropic ply in local coordinate 

are defined as:  

 

( )
( )

1
11 12 13 1

2 12 22 23 2

3 13 23 33 3

44 2323

55 1313

66 12
12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

k
k

C C C

C C C

C C C

C

C

C

 
 

 






     
     
     
        

     
    
    
            

 (1.19) 

where ijC are material stiffness coefficients. If the transverse stress is neglected 

3( 0)   [1], the stress-strain relations are remained: 

 

( ) ( )

1 111 12

2 212 22

23 44 23

5513 13

6612 12

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

k k
Q Q

Q Q

Q

Q

Q

 

 

 

 

 

    
    
           

    
    
        

 (1.20) 

where  k

ijQ are the plane stress-reduced stiffness coefficients, see Appendix A. Using 

transformation equations, the constitutive equations for the thk -ply in the global 

coordinate system (x,y,z) are given by: 

 

( ) ( )

11 12 16

12 22 26

44 45

45 55

16 26 66

0 0

0 0

0 0 0

0 0 0

0 0

k k

x x

y y

yz yz

xz xz

xy xy

Q Q Q

Q Q Q

Q Q

Q Q

Q Q Q

 

 

 

 

 

    
    
    
       

    
    
        

 (1.21) 

where  k

ijQ  are indicated in Appendix A. The one-dimensional stress states of 

laminated composite beams are contained by assuming plane strain in x-z plane 

( 0)y yz xy      [69, 100, 101] 

 

( )( )

11

55

0

0

kk

x x

xz xz

Q

Q

 

 

       
             

 (1.22) 
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Neglecting the strain out of x-z plane is equivalent to ignoring of the Poisson’s effect 

([85]). Therefore, this constitutive relations would be well-known as neglecting the 

Poisson’s effect. 

Another assumption is used by researchers to obtain the stress-strain relations for 

laminated composite beams as followings. Using transformation equations for Eq. 

(1.19), the elastic strain and stress relations of thk -ply in global coordinate are given 

by: 

 

( ) ( )

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

k k

x
x

y
y

z z

yzyz

xz
xz

xy
xy

C C C C

C C C C

C C C C

C C

C C

C C C C

 
 

 






                            
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    
    

        

 (1.23) 

where the ijC are transformed elastic coefficients, see Appendix A for more detail. 

Moreover, a plane stress constitutive relation ([83-85, 102]) in x-z plane can be 

assumed for laminated beams. By setting 0y xy yz     , Eq. (1.23) is reduced to: 
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 (1.24) 

where 11C , 13C , 33C , 55C  are reduced stiffness constants of thk -layer in global 

coordinates. 

If the transverse normal stress is omitted ( 0z  ), the one-dimensional stress states 

of laminated composite beams are contained: 
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 (1.25)            

where *
11C  and *

55C  are indicated in Appendix A   
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It can be stated that in Eqs. (1.24) and (1.25), the Poisson’s effect is incorporated in 

the constitutive equation. 

1.3. Organization 

There are eight chapters in this thesis as followings: 

- Chapter One describes the purpose, scope and organization as well as the 

review study on laminated composite beams.  

- Based on the HOBT, Chapter Two deals with the buckling, bending and free 

vibration behaviours of laminated composite beam. In this Chapter, new 

trigonometric functions are proposed for beams under various boundary 

conditions.  

- The theoretical formulation in Chapter Two is extended in Chapter Three. 

Effect of mechanical and thermal load on buckling and free vibration 

behaviours of composite beams are considered. New hybrid functions based 

on a combination of admissible and exponential functions for various 

boundary conditions are proposed.  

- Chapter Four focuses on the effects of normal strain and Poisson’s ratio on 

buckling, bending and free vibration behaviours of beams. Both HOBT and 

quasi-3D theories are used to investigate effects of normal strain and Poisson’s 

ratio, which is integrated in constitutive equations.  

- The modified couple stress theory is employed in Chapter Five for micro-

laminated composite beams using HOBT and the exponential functions are 

proposed to solve problem. Poisson’s effect on buckling, bending and free 

vibration behaviours of general micro-laminated composite beams is 

investigated.  

- Chapter Six analyses thin-walled laminated composite and functionally graded 

thin-walled beams based on FOBT. Numerical results about frequency, critical 

buckling load and displacement of channel and I-beams are presented.  
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- Study on new approximation functions is carried in Chapter Seven. 

Convergence, computational cost and numerical stability are investigated to 

verify efficiency of proposed functions.  

- In the last Chapter, the main conclusions and recommendations for future 

research are presented. 
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 Chapter 2.  ANALYSIS OF LAMINATED COMPOSITE BEAMS BASED ON 

A HIGH-ORDER BEAM THEORY 3 

2.1. Introduction 

In order to predict accurately structural responses of composite laminated beams, 

various beam theories with different approaches have been developed. A general 

review and assessment of these theories for composite beams can be found in [2, 103-

105]. It should be noted that HOBT has been increasingly applied in predicting 

responses of composite beams. 

For numerical methods, finite element method has been widely used to analyse 

composite beams [20-27, 106-108]. For analytical approach, Navier solution is the 

simplest one, which is only applicable for simply supported boundary conditions 

(BCs) [35, 36, 83, 109]. In order to deal with arbitrary boundary conditions, many 

researchers developed different methods. Ritz-type method is commonly used [44, 

47, 48, 100]. Khdeir and Reddy [101, 110] developed state-space approach to derive 

exact solutions for the natural frequencies and critical buckling loads of cross-ply 

composite beams. Chen et al. [84] also proposed an analytical solution based on state-

space differential quadrature for vibration of composite beams. By using the dynamic 

stiffness matrix method, Jun et al. [32, 111] calculated the natural frequencies of 

composite beams based on third-order beam theory. A literature review shows that 

although Ritz procedure is efficient to deal with static, buckling and vibration 

problems of composite beams with various boundary conditions, the research on this 

interesting topic is still limited.  

The objectives of this Chapter is to develop a new trigonometric-series solution 

for analysis of composite beams. It is based on a higher-order beam theory which 

accounts for a higher-order variation of the axial displacement. By using Lagrange 

equations, the governing equations of motion are derived. Ritz-type analytical 

solution with new trigonometric series is developed for beams under various 

boundary conditions. The convergence and verification studies are carried out to 

                                                      
3 A slightly different version of this chapter has been published in Composite Structures in 2017  
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demonstrate the accuracy of the proposed solution. Numerical results are  presented 

to investigate the effects of length-to-height ratio, fibre angle and material anisotropy 

on the deflections, stresses, natural frequencies and critical buckling loads of 

composite beams. 

2.2. Beam model based on the HOBT 

A laminated composite beam with rectangular section (bxh) and length L as 

shown in Fig. 2.1 is considered. It is made of n plies of orthotropic materials in 

different fibre angles with respect to the x-axis. 

b

L

h

x

z

y

 

Figure 2.1. Geometry and coordinate of a laminated composite beam. 

2.2.1. Kinetic, strain and stress relations 

In this Chapter, the displacement field of composite beams is based on the HOBT 

[89, 90] as: 

3
0

0 1 0 0, 12

( , ) 5 5
( , , ) ( , ) ( , ) ( , ) ( ) ( , )

4 3
x

w x t z z
u x z t u x t z u x t u x t zw f z u x t

x h

 
       

  
 (2.1) 

 0( , , ) ( , )w x z t w x t  (2.2) 

where the comma indicates the partial differentiation with respect to the 

corresponding subscript coordinate; 0 ( , )u x t and 0 ( , )w x t  are the axial and vertical 

displacements at mid-plane of the beam, respectively; 1( , )u x t  is the rotation of a 

transverse normal about the y-axis; ( )f z  represents the higher-order variation of 

axial displacement. The non-zero strain of beams is obtained as: 



17 
 

 0 b s
x x x x

u
z f

x
   


   


 (2.3) 

  1xz

u w
gu

z x


 
  
 

 (2.4) 

where  

 0,
b
x xxw   , 1,

s
x xu  , ,zg f   (2.5) 

The elastic strain and stress relations of thk -layer in global coordinates is given 

by: 
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 (2.6) 

where the 
( )k

ijQ  are showed in Appendix A. 

2.2.2. Variational formulation 

The strain energy  E  of beam is given by: 

 
1

2
E x x xz xzV

dV     

2 2 2 2
0, 0, 0, 0, 0, 1, 0, 1, 1, 1

0

1
( ) 2 ( ) 2 2 ( ) ( )

2

L
s s s s

x x xx xx x x xx x xA u Bu w D w B u u D w u H u A u dx          (2.7) 

where the stiffness coefficients of the beam are determined as follows:  

    
1

( ) 2 2
11

1

, , , , , 1, , , , ,
k

k

zn
s s s k

k z

A B D B D H Q z z f zf f bdz




     (2.8) 

 
1

( ) 2
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1

k

k

zn
s k

k z

A Q g bdz




    (2.9) 

The work done W by the compression load 0N  and transverse load q is given by: 

 2
0 0 0,

0 0

1
( )

2

L L

W xqw bdx N w bdx      (2.10) 

The kinetic energy K  of beam is expressed as: 

    2 21

2
V

K
z wu dV     
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  
22 2 2

0 0 1 0 0, 2 0, 1 1 0 2 1 0, 2 1 0 0

0

1
2 2 2

2

L

x x xI u I u w I w J u u J u w K u I w dx       
                (2.11) 

where dot-superscript denotes the differentiation with respect to the time t ;   is the 

mass density of each layer, and 0I , 1I , 2I , 1J , 2J , 2K  are the inertia coefficients 

determined by:  
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I I I J J K z z f zf f bdz




    (2.12) 

The total energy   of beam is obtained as: 

E W K      
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L L

xqw bdx N w bdx      
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22 2 2

0 0 1 0 0, 2 0, 1 1 0 2 1 0, 2 1 0 0

0

1
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2
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              (2.13) 

In this Chapter, Ritz solution is used to approximate the displacement field as: 
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   (2.15) 

 1 1
1

( , ) ( )
m

i t
j j

j

u x t x u e 


  (2.16) 

where   is the frequency, 2 1i     the imaginary unit; 0ju , 0jw , 1 ju are values to be 

determined; ( )j x ,  ( )j x ,  and  ( )j x  are approximation functions which proposed 

simply-supported (S-S), clamped-free (C-F) and clamped-clamped (C-C) (see Table 

2.1). It is clear that the proposed approximation functions satisfy various boundary 

conditions given in Table 2.2. It is noted that the inappropriate approximation 

functions may cause slow convergence rates and numerical instabilities [48, 100]. In 
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addition, for approximation functions which do not satisfy boundary conditions, 

Lagrangian multipliers method can be used to impose boundary conditions [98, 112]. 

Table 2.1. Approximation functions of the beams. 

BC ( )j x  ( )j x  ( )j x  

S-S cos
j x

L

 
 
 

 sin
j x

L

 
 
 

 cos
j x

L

 
 
 

 

C-F 
(2 1)

sin
2

j x

L

 
 
 

 
(2 1)

1 cos
2

j x

L

 
  

 
 

(2 1)
sin

2

j x

L

 
 
 

 

C-C 
2

sin
j x

L

 
 
 

 2sin
j x

L

 
 
 

 
2

sin
j x

L

 
 
 

 

Table 2.2. Kinematic BCs of the beams. 

BC Position Value 

S-S x=0 0 0w   

 x=L 0 0w   

C-F x=0 0 0u  , 0 0w  , 0, 0xw  , 1 0u   

 x=L  

C-C x=0 0 0u  , 0 0w  , 0, 0xw  , 1 0u   

 x=L 0 0u  , 0 0w  , 0, 0xw  , 1 0u   

The governing equations of motion can be obtained by substituting Eqs. (2.14, 

2.15 and 2.16) into Eq. (2.13) and using Lagrange’s equations:  

 0
j j

d

p dt p

 
 

 
  (2.17) 

with jp  representing the values of ( 0ju , 0jw , 1 ju ), the bending, buckling and vibration 

responses of beams can be obtained from the following equations: 
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K K K K M M w F

K K K K M M 0u

 (2.18) 

where the components of stiffness matrix K, mass matrix M and vector F are given 

by:  
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The deflection, stresses, critical buckling loads and natural frequencies of composite 

beams can be determined by solving Eq. (2.18). 

2.3. Numerical examples 

In this section, convergence and verification studies are carried out to demonstrate 

the accuracy of the proposed solution and to investigate the responses of composite 

beams with various boundary conditions for bending, vibration and buckling 

problems. For static analysis, the beam is subjected to a uniformly distributed load 

with density q. Laminates are supposed to have equal thicknesses and made of the 

same orthotropic materials (MAT) whose properties are followed: 

- Material I.2 1 2/ openE E  , 12 13 20.6G G E  , 23 20.5G E , 12 0.25   (2.20) 

- Material II.2 1 2/ openE E  , 12 13 20.5G G E  , 23 20.2G E , 12 0.25   (2.21) 

- Material III.2 1 144.9GPaE  , 2 9.65GPaE  , 12 13 4.14GPaG G  , 23 3.45GPaG    

12 0.3  , 31389 /kg m    (2.22) 

For convenience, the following normalized terms are used: 
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E bh
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In order to evaluate the convergence and reliability of the proposed solution, 

(00/900/00) composite beams (L/h = 5) with MAT I.2 and 1 2/ 40E E   are considered. 

The mid-span displacements, fundamental natural frequencies and critical buckling 

loads with respect to the series number m for different boundary conditions are given 

in Table 2.3. It is observed that the responses converge quickly for three boundary 

conditions: m = 2 for buckling, m = 12 for vibration, and m = 14 for deflection. Thus, 

these numbers of series terms will be used for buckling, vibration and static analysis, 

respectively throughout the numerical examples. In comparison, the present 

trigonometric solution appears convergence more quickly than the polynomial series 

solution [98] especially for buckling analysis.  

Table 2.3. Convergence studies for the non-dimensional fundamental frequencies, 

critical buckling loads and mid-span displacements of (00/900/00) composite beams 

(MAT I.2, / 5L h  , E1/E2 = 40). 

BC    m     

 2 4 6 8 10 12 14 16 

a. Fundamental frequency  

S-S 9.2084 9.2084 9.2084 9.2084 9.2084 9.2084 9.2084 9.2084 

C-F 4.3499 4.2691 4.2473 4.2394 4.2359 4.2342 4.2332 4.2327 

C-C 11.8716 11.6673 11.6269 11.6143 11.6093 11.6069 11.6056 11.6048 

b. Critical buckling load  

S-S 8.6132 8.6132 8.6132 8.6132 8.6132 8.6132 8.6132 8.6132 

C-F 4.7080 4.7080 4.7080 4.7080 4.7080 4.7080 4.7080 4.7080 

C-C 11.6518 11.6518 11.6518 11.6518 11.6518 11.6518 11.6518 11.6518 

c. Deflection  

S-S 1.4978 1.4632 1.4685 1.4671 1.4676 1.4674 1.4675 1.4674 

C-F 3.6160 4.0311 4.1035 4.1380 4.1499 4.1571 4.1604 4.1626 

C-C 0.8696 0.9183 0.9274 0.9301 0.9311 0.9316 0.9319 0.9320 
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2.3.1. Static analysis 

As the first example, (00/900/00) and (00/900) composite beams with MAT II.2 and 

1 2/ 25E E   are considered. Their mid-span displacements for various boundary 

conditions with 4 ratios of length-to-height, L/h = 5; 10; 20; 50  are given in Tables 

2.4 and 2.5, and then being compared to earlier studies. It is observed that the present 

solutions are in excellent agreement with those calculated by various higher-order 

beam theories [20, 22, 24, 36, 69]. The axial and transverse shear stresses of these 

beams with L/h = 5; 10 are presented in Table 2.6 and compared to solutions obtained 

by Vo and Thai [22], and Zenkour [36]. Good agreements with the previous models 

are also found.  

Table 2.4. Normalized mid-span displacements of (00/900/00) composite beam under 

a uniformly distributed load (MAT II.2, E1/E2 = 25).  

BC Theory L/h    

  5 10 20 50 

S-S Present 2.412 1.096 0.759 0.665 

 Murthy et al. [24] 2.398 1.090 - 0.661 

 Khdeir and Reddy [69] 2.412 1.096 - 0.665 

 Vo and Thai (HOBT) [22] 2.414 1.098 0.761 0.666 

 Zenkour [36] 2.414 1.098 - 0.666 

 Mantari and Canales [20] - 1.097 - - 

C-F Present 6.813 3.447 2.520 2.250 

 Murthy et al. [24] 6.836 3.466 - 2.262 

 Khdeir and Reddy [69] 6.824 3.455 - 2.251 

 Vo and Thai (HOBT) [22] 6.830 3.461 2.530 2.257 

 Mantari and Canales   [20] - 3.459 - - 

C-C Present 1.536 0.531 0.236 0.147 

 Khdeir and Reddy [69] 1.537 0.532 - 0.147 

 Mantari and Canales [20] - 0.532 - - 
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Table 2.5. Normalized mid-span displacements of (00/900) composite beam under a 

uniformly distributed load (MAT II.2, E1/E2 = 25).  

BC Theory L/h    

  5 10 20 50 

S-S Present 4.777 3.688 3.413 3.336 

 Murthy et al. [24] 4.750 3.668 - 3.318 

 Khdeir and Reddy [69] 4.777 3.688 - 3.336 

 Vo and Thai (HOBT) [22] 4.785 3.696 3.421 3.344 

 Zenkour [36] 4.788 3.697 - 3.344 

 Mantari and Canales  [20] - 3.731 - - 

C-F Present 15.260 12.330 11.556 11.335 

 Murthy et al. [24] 15.334 12.398 - 11.392 

 Khdeir and Reddy [69] 15.279 12.343 - 11.337 

 Vo and Thai (HOBT) [22] 15.305 12.369 11.588 11.363 

 Mantari and Canales  [20] - 12.475 - - 

C-C Present 1.920 1.004 0.752 0.679 

 Khdeir and Reddy [69] 1.922 1.005 - 0.679 

 Mantari and Canales [20] - 1.010 - - 

 

Table 2.6. Normalized stresses of (00/900/00) and (00/900) composite beams with 

simply-supported boundary conditions (MAT II.2, E1/E2 = 25).  

Lay-up Theory xx   xz   

  L/h=5 10 L/h=5 10 

00/900/00 Present 1.0696 0.8516 0.4050 0.4289 

 Zenkour [36] 1.0669 0.8500 0.4057 0.4311 

 Vo and Thai (HOBT) [22] 1.0670 0.8503 0.4057 0.4311 

00/900 Present 0.2362 0.2343 0.9174 0.9483 

 Zenkour [36] 0.2362 0.2343 0.9211 0.9572 

 Vo and Thai (HOBT) [22] 0.2361 0.2342 0.9187 0.9484 
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The variation of the axial and shear stress through the beam depth is displayed in Fig. 

2.2 in which a parabolic distribution and traction-free boundary conditions of shear 

stress is observed. 

 

a. 0 0 00 / 90 / 0             b. 0 00 / 90  

 

c. 0 0 00 / 90 / 0           d. 0 00 / 90  

Figure 2.2. Distribution of the normalized stresses ( ,xx xz  ) through the beam depth 

of (00/900/00) and (00/900) composite beams with simply-supported boundary 

conditions (MAT II.2, E1/E2 = 25).  

Next, the effect of fiber angle change on the mid-span displacements of  /
S

   

composite beams (L/h  = 10) with MAT II.2 and 1 2/ 25E E   is plotted in Fig. 2.3. It 

can be seen that the mid-span transverse displacement increases with the fibre angle, 

the lower curve corresponds to the C-F beams while the highest curve is C-C ones.  
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Figure 2.3. Effects of the fibre angle change on the normalized transverse 

displacement of  /
s

  composite beams ( / 10L h  , MAT II.2, E1/E2 = 25).  

2.3.2. Vibration and buckling analysis 

Table 2.7. Normalized critical buckling loads of (00/900/00) and (00/900) composite 

beams (MAT I.2, E1/E2 = 40).  

BC Lay-ups Theory L/h    

   5 10 20 50 

S-S (00/900/00) Present 8.613 18.832 27.086 30.906 

  Mantari and Canales [44] 8.585 18.796 - - 

  Khdeir and Reddy [110] 8.613 18.832 - - 

 (00/900) Present 3.907 4.942 5.297 5.406 

  Aydogdu [48] 3.906 - - - 

  Mantari and Canales [44] 3.856 4.887 - - 

C-F (00/900/00) Present 4.708 6.772 7.611 7.886 

  Mantari and Canales [44] 4.673 6.757 - - 

  Khdeir and Reddy [110] 4.708 6.772 - - 

 (00/900) Present 1.236 1.324 1.349 1.356 

  Aydogdu [48] 1.235 - - - 

  Mantari and Canales [44] 1.221 1.311 - - 

C-C (00/900/00) Present 11.652 34.453 75.328 114.398 

  Mantari and Canales [44] 11.502 34.365 - - 

  Khdeir and Reddy [110] 11.652 34.453 - - 

 (00/900) Present 8.674 15.626 19.768 21.372 

  Mantari and Canales [44] 8.509 15.468 - - 
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Tables 2.7-2.9 report the fundamental frequencies and critical buckling loads of 

(00/900/00 ) and (00/900) composite beams with different boundary conditions. The 

present solutions are validated by comparison with those derived from HOBTs [21, 

24, 44, 48, 100, 101, 110]. Excellent agreements between solutions from the present 

model and previous ones are observed while a slight deviation with those from 

Mantari and Canales [44] is found for L/h = 5.  

Table 2.8. Normalized critical buckling loads of (00/900/00) and (00/900) composite 

beams with simply-supported boundary conditions (MAT I.2 and II.2, E1/E2 = 10).  

Lay-ups Theory L/h    

  5 10 20 50 

MAT I.2      

(00/900/00)  Present 4.727 6.814 7.666 7.945 

 Aydogdu [48] 4.726 - 7.666 - 

 Vo and Thai [21] 4.709 6.778 7.620 7.896 

(00/900)  Present 1.920 2.168 2.241 2.262 

 Aydogdu [48] 1.919 - 2.241 - 

 Vo and Thai [21] 1.910 2.156 2.228 2.249 

MAT II.2      

(00/900/00)  Present 3.728 6.206 7.460 7.909 

 Aydogdu [48] 3.728 - 7.459 - 

 Vo and Thai [21] 3.717 6.176 7.416 7.860 

(00/900)  Present 1.766 2.116 2.227 2.260 

 Aydogdu [48] 1.765 - 2.226 - 

 Vo and Thai [21] 1.758 2.104 2.214 2.247 

The first three mode shapes of (00/900/00) and (00/900) composite beams (L/h = 

10) with MAT I.2 and 1 2/ 40E E   is plotted in Fig. 2.4. It can be seen that the 

symmetric beam exhibits double coupled vibration ( 0w , 1u ) whereas the anti-

symmetric one presents triply coupled vibration ( 0u , 0w , 1u ).  
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Table 2.9. Normalized fundamental frequencies of (00/900/00) and (00/900) composite 

beams (MAT I.2, E1/E2 = 25).  

BC Lay-ups Theory L/h    

   5 10 20 50 

S-S (00/900/00) Present 9.208 13.614 16.338 17.462 

  Murthy et al. [24] 9.207 13.611 - - 

  Khdeir and Reddy [101] 9.208 13.614 - - 

  Aydogdu [100] 9.207 - 16.337 - 

  Vo and Thai [21] 9.206 13.607 16.327 - 

  Mantari and Canales [44] 9.208 13.610 - - 

 (00/900) Present 6.128 6.945 7.219 7.302 

  Murthy et al. [24] 6.045 6.908 - - 

  Khdeir and Reddy [101] 6.128 6.945 - - 

  Aydogdu [100] 6.144 - 7.218 - 

  Vo and Thai [21] 6.058 6.909 7.204 7.296 

  Mantari and Canales [44] 6.109 6.913 - - 

C-F (00/900/00) Present 4.234 5.498 6.070 6.267 

  Murthy et al. [24] 4.230 5.491 - - 

  Khdeir and Reddy [101] 4.234 5.495 - - 

  Aydogdu [100] 4.234 - 6.070 - 

  Mantari and Canales [44]  4.221 5.490 - - 

 (00/900) Present 2.383 2.543 2.591 2.605 

  Murthy et al. [24] 2.378 2.541 - - 

  Khdeir and Reddy [101] 2.386 2.544 - - 

  Aydogdu [100] 2.384 - 2.590 - 

  Mantari and Canales [44] 2.375 2.532 - - 

C-C (00/900/00) Present 11.607 19.728 29.695 37.679 

  Murthy et al. [24] 11.602 19.719 - - 

  Khdeir and Reddy [101] 11.603 19.712 - - 

  Aydogdu [100] 11.637 - 26.926 - 

  Mantari and Canales [44]  11.486 19.652 - - 

 (00/900) Present 10.027 13.670 15.661 16.429 

  Murthy et al. [24] 10.011 13.657 - - 

  Khdeir and Reddy [101] 10.026 13.660 - - 

  Aydogdu [100] 10.102 - 15.688 - 

  Mantari and Canales [44]  9.974 13.628 - - 
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a. 1 13.6136   (00/900/00)        b. 1 6.9451   (00/900) 

 

             c. 2 36.8334   (00/900/00)   d. 2 24.5139   (00/900) 

 

 e. 3 60.8686   (00/900/00)      f. 3 47.5396   (00/900) 

Figure 2.4.The first three mode shapes of (00/900/00) and (00/900) composite beams 

with simply-supported boundary conditions (L/h = 10, MAT I.2, E1/E2 = 40).  
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The effect of the ratio of material anisotropy on the fundamental frequencies and 

critical buckling loads is plotted in Fig. 2.5. Obviously, the results increase with 

1 2/E E  

 

a.                                              b.  

Figure 2.5. Effects of material anisotropy on the normalized fundamental frequencies 

and critical buckling loads of (00/900/00) and (00/900) composite beams with 

simplysupported boundary conditions ( / 10L h  , MAT I.2). 

Finally,  /
S

  composite beams (L/h = 15) with MAT III.2 are analysed. The 

effects of fibre angle variation on the fundamental frequencies and critical buckling 

loads are illustrated in Table 2.10 and Fig. 2.6. It can be seen that the results decrease 

with an increase of fibre angle. A good agreement between the present solutions and 

those obtained from [27] is observed. It should be noted that there exist slight 

deviations between the present solution and Chandrashekhara et al. [27] with those 

from previous studies [21, 47, 84]. The  0 030 / 30
S

 composite beams with S-S, C-F 

and C-C boundary conditions are chosen to investigate the effect of the length-to-

height ratio on the fundamental frequencies and critical buckling loads (Fig. 2.7). It 

can be seen that the results increase with the increase of L/h. The effect of the length-

to-height ratio is effectively significant for C-C boundary condition when L/h < 20. 
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Table 2.10. Normalized fundamental frequencies of  /
s

  composite beams with 

respect to the fibre angle change ( / 15L h  MAT III.2). 

BC Reference Angle-ply ( )   

  00 300 600 900 

S-S Present 2.6563 2.1033 1.0121 0.7317 

 Aydogdu [47]  2.6510 1.1410 0.7360 0.7290 

 Chandrashekhara et al. [78] 2.6560 2.1032 1.0124 0.7320 

 Vo and Thai [21] 2.6494 1.5540 0.7361 0.7295 

C-F Present  0.9832 0.7683 0.3631 0.2618 

 Aydogdu [47]  0.9810 0.4140 0.2620 0.2600 

 Chandrashekhara et al. [78] 0.9820 0.7678 0.3631 0.2619 

 Vo and Thai [21] 0.9801 0.3678 0.3631 0.2619 

C-C Present  4.9116 4.1307 2.2019 1.6205 

 Aydogdu [47]  4.9730 2.1950 1.6690 1.6190 

 Chandrashekhara et al. [78] 4.8487 4.0981 2.1984 1.6200 

 Vo and Thai [21] 4.8969 3.2355 1.6309 1.6152 

 Chen et al. [84] 4.8575 2.3445 1.6711 1.6237 

 

 

a.                                              b.  

Figure 2.6. Effects of the fibre angle change on the normalized fundamental frequencies 

and critical buckling loads of  /
s

  composite beams ( / 15L h  , MAT III.2) 
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Figure 2.7. Effects of the length-to-height ratio on the normalized fundamental 

frequencies and critical buckling loads of  30 / 30
s

 composite beams ( / 15L h  , 

MAT III.2) 

2.4. Conclusion 

The new analytical solution is proposed for static, buckling and vibration analysis 

of laminated composite beams based on a HOBT. This solution based on 

trigonometric series is developed for various boundary conditions. Numerical results 

are obtained to compare with previous studies and to investigate effects of fibre angle 

and material anisotropy on the deflections, stresses, natural frequencies, critical 

buckling loads and corresponding mode shapes. The obtained results show that: 

- Beam model is suitable for free vibration, buckling and bending analysis of 

laminated composite beams.  

- The proposed series solution converges quickly for buckling analysis.  

- The present solution is found to simple and efficient in analysis of laminated 

composite beams with various boundary conditions. 
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 Chapter 3.  VIBRATION AND BUCKLING ANALYSIS OF LAMINATED 

COMPOSITE BEAMS UNDER THERMO-MECHANICAL LOAD 4 

3.1. Introduction 

The laminated composite beam has been widely used in multi-physics 

environments such as construction, transportation, nuclear, etc. In this context, the 

analysis of thermal and mechanical behaviours of laminated composite beams has 

attracted a number of researchers who employed various analytical and numerical 

approaches to accurately predict the behaviour of laminated composite beams. 

Among numerical approaches, finite element method is the most popular one used 

for the analysis of laminated composite beams. For example, Mathew et al. [113] 

investigated the thermal buckling behaviour of composite beams based on the first-

order shear deformation theory, whilst Lee [114] examined the thermal buckling 

response of composite beams based on a layerwise theory. Murthy et al. [24] and Vo 

and Thai [22] used a higher-order shear deformation beam theory to predict the 

bending behaviour of laminated composite beams. Vo and Thai [21] also applied the 

HOBT to analyse the mechanical buckling and vibration of laminated composite 

beams. For analytical approaches, Kant et al. [115] studied the dynamic responses of 

laminated composite beams based on a refined HOBT and Navier solution procedure. 

Emam and Eltaher [116] investigated buckling and postbuckling behaviours of 

laminated composite beams in hygrothermal environment. For the laminated 

composite beam with various boundary conditions, Khdeir and Reddy ([101], [117]) 

used a state-space approach and various beam theories for the vibration and buckling 

analysis of cross-ply laminated composite beams. The thermal buckling behaviour of 

laminated composite beams was also investigated by Khdeir [118] based on various 

beam theories including the CBT, FOBT and HOBT. Moreover, Abramovich [119] 

predicted thermal buckling load of laminated composite beams based on the FOBT 

and an analytical solution for different boundary conditions. Based on Ritz method 

and the HOBT, Aydogdu examined the free vibration [100], mechanical buckling 

                                                      
4 A slightly different version of this chapter has been published in Composite Structures in 2018  
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[48] and thermal buckling [120] of laminated composite beams with different 

boundary conditions. Wattanasakulpong et al. [121] used polynomial functions to 

determine thermal buckling load and free vibration of functionally graded beams. 

Mantari and Canales [44] also used Ritz method to predict mechanical buckling and 

vibration responses of laminated composite beams. Asadi et al. [122] analysed the 

nonlinear vibration and thermal stability of shape memory alloy hybrid laminated 

composite beams based on Galerkin method. Warminska et al. [123] analysed the 

vibration of composite beams under thermal and mechanical loadings based on the 

FOBT. Jun et al. [124] applied dynamic stiffness method to analyse the vibration and 

buckling of laminated composite beams. Vosoughi et al. [125] adopted the 

differential quadrature method and the FOBT to study the thermal buckling and 

postbuckling behaviours of laminated composite beams with temperature-dependent 

properties. It can be seen that Ritz method has not been widely used to analyse 

laminated composite beams under thermal and mechanical loadings. 

The objective of this Chapter is to develop a Ritz solution for thermo-mechanical 

buckling and vibration of laminated composite beams. In the present solution, new 

approximation functions are proposed. The displacement field of the present study is 

based on the HOBT. Verification study is carried out throughout numerical examples 

to illustrate the accuracy of the present solution. Parametric study is also performed 

to examine the influences of length-to-height ratio, boundary conditions, material 

anisotropy and temperature changes on the buckling and vibration of laminated 

composite beams under mechanical and thermal loads.  

3.2. Theoretical formulation 

A laminated composite beam, which is defined in Chapter Two (Fig. 2.1), is 

supposed to be embedded in thermal environment with a uniform temperature rise 

through the beam thickness as: 

 0T T T    (3.1) 

where 0T  is reference temperature which is supposed to be one at the bottom surface 

of the beam.  
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3.2.1. Beam model based on the HOBT 

The displacement field and constitutive equations of composite beams are based 

on the HOBT [89, 90] as in Chapter Two. Therefore, the strain energy E  and the 

kinetic energy K  of beams are also determined as Eq. (2.7) and (2.11), respectively. 

The work done W by thermal and mechanical loads can be written as: 

 0 2 0 2
0, 0,

0 0

1 1
( ) ( )

2 2

L L
m t

W x x x xN w bdx N w bdx       (3.2) 

where 0m
xN  and 0t

xN  are the axial mechanical load and axial thermal stress resultant, 

respectively. For a temperature rise  0T T , the thermal axial stress resultant is given 

by:   

   
1

0
011 12 16

1

k

k

zn
t

x x y xy
k z

N Q Q Q T T dz  




      (3.3) 

where x , y  and xy  are the transformed thermal expansion coefficients in global 

coordinates (see Appendix A for more details).  

The total energy   of beams is obtained as: 

E W K     

2 2 2 2
0, 0, 0, 0, 0, 1, 0, 1, 1, 1

0

1
( ) 2 ( ) 2 2 ( ) ( )

2

L
s s s s

x x xx xx x x xx x xA u Bu w D w B u u D w u H u A u dx         

0 2 0 2
0, 0,

0 0

1 1
( ) ( )

2 2

L L
m t

x x x xN w bdx N w bdx      

 
22 2 2

0 0 1 0 0, 2 0, 1 1 0 2 1 0, 2 1 0 0

0

1
2 2 2

2

L

x x xI u I u w I w J u u J u w K u I w dx       
              (3.4) 

3.2.2. Solution procedure 

Ritz solution is used to approximate the displacement field as: 

 0
1

( , ) ( )
m

i t
j 0 j

j

u x t x u e 


    (3.5) 

 0
1

( , ) ( )
m

i t
j 0 j

j

w x t x w e 


  (3.6) 
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 1 1
1

( , ) ( )
m

i t
j j

j

u x t x u e 


  (3.7) 

where   is the frequency, 2 1i    the imaginary unit; 0ju , 0jw , 1 ju are values to be 

determined; ( )j x , ( )j x  and ( )j x  are approximation functions. This Chapter 

proposed new hybrid approximation functions reported in Table 3.1. They are 

combinations of exponential and admissible functions which satisfy simply-supported 

(S-S), hinged-hinged (H-H), clamped-free (C-F), clamped-simply suppoeted (C-S) , 

clamped-hinged (C-H) and clamped-clamped (C-C) boundary conditions. 

Table 3.1. Approximation functions and kinematic BC of the beams. 

 

By substituting Eqs. (3.5, 3.6 and 3.7) into Eq. (3.4) and using Lagrange’s 

equations Eq. (3.8)  

BC Position 
/

( )j

jx L

x

e




 
/

( )j

jx L

x

e




 
/

( )j

jx L

x

e




 Value 

S-S x=0 
( 2 )L x  ( )x L x  ( 2 )L x  

0 0w   

 x=L 0 0w   

H-H x=0 
( )x L x  ( )x L x  1 

0 0u  , 0 0w   

 x=L 0 0u  , 0 0w   

C-F x=0 
x  2x  x  

0 0u  , 0 0w  , 0, 0xw  , 1 0u   

 x=L  

C-S x=0 
x  2 ( )x L x  x  

0 0u  , 0 0w  , 0, 0xw  , 1 0u   

 x=L 0 0w   

C-H x=0 
( )x L x  2 ( )x L x  x  

0 0u  , 0 0w  , 0, 0xw  , 1 0u   

 x=L 0 0u  , 0 0w   

C-C x=0 
( )x L x  2 2( )x L x  ( )x L x  

0 0u  , 0 0w  , 0, 0xw  , 1 0u   

 x=L 0 0u  , 0 0w  , 0, 0xw  , 1 0u   
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 0
j j

d

p dt p

 
 

 
  (3.8) 

with jp  representing the values of ( 0ju , 0jw , 1 ju ), the thermo-mechanical buckling and 

vibration responses of laminated composite beams can be obtained from the 

following equations 
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 (3.9) 

where the components of stiffness matrix K and mass matrix M are given by:  
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The critical buckling loads and natural frequencies of composite beams can be 

determined by solving Eq.(3.9). 

3.3. Numerical results 

Each lamina of laminated composite beams has the same thicknesses and it is 

made from the orthotropic materials as given in Table 3.2. The beam is supposed to 

be embedded in thermal environments with a uniform temperature rise in the depth 

of the beam. Moreover, it is assumed that 0
0 0 CT   in the examples. For convenience, 

the following nondimensional terms are used: 
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  for Material I.3 (MAT I.3) (3.11) 
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Table 3.2. Material properties of laminated composite beams. 

Material properties MAT I.3 

[100] 

MAT II.3  

[124] 

E1 (GPa) E1/E2=open 138 

E2=E3(GPa) - 6.9 

G12=G13 (GPa) 0.6E2 4.14 

G23 (GPa) 0.5E2 3.45 

12=13 0.25 0.25 

 (kg/m2) - 1550.1 

L (m) L/h=open 0.381 

h (m) - 0.0381 

b (m) - 1 

* 0
1 (1/ )C  * *

2 1/ open    66x10  

* 0
2 (1/ )C  - 618x10  

 

3.3.1. Convergence study 

For purpose of testing the convergence of the present solutions, laminated 

composite beams (MAT I.3, 00/900/00, / 5L h  , 1 2/ 40E E  ) with different boundary 

conditions subjected to mechanical loads are considered. The variations of 

nondimensional fundamental frequencies and critical buckling loads with respect to 

the series number m  are given in Table 3.3. The results show that 12m   is the 

convergence point for the natural frequency and buckling load for all BCs. Therefore, 

this number of series terms will be used in the following numerical examples. 
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Table 3.3. Convergence study of nondimensional critical buckling load and 

fundamental frequency of (00/900/00) beams (MAT I.3, / 5L h  , E1/E2 = 40).  

BC m 

2 4 6 8 10 12 14 

Fundamental frequency 

S-S 9.6543 9.2186 9.2088 9.2084 9.2084 9.2084 9.2084 

H-H 9.8795 9.2195 9.2088 9.2084 9.2084 9.2084 9.2084 

C-F 4.2776 4.2383 4.2319 4.2316 4.2315 4.2315 4.2315 

C-S 10.5759 10.2712 10.2397 10.2393 10.2393 10.2393 10.2393 

C-H 10.5759 10.2712 10.2397 10.2393 10.2393 10.2393 10.2393 

C-C 12.2770 11.7198 11.6292 11.6074 11.6044 11.6048 11.6045 

Critical buckling load 

S-S 9.3219 8.6261 8.6139 8.6132 8.6132 8.6132 8.6132 

H-H 9.1156 8.6272 8.6138 8.6132 8.6132 8.6132 8.6132 

C-F 5.0327 4.7085 4.7080 4.7080 4.7080 4.7080 4.7080 

C-S 9.9534 9.8257 9.8138 9.8138 9.8138 9.8138 9.8138 

C-H 9.9534 9.8257 9.8138 9.8138 9.8138 9.8138 9.8138 

C-C 12.0368 11.6687 11.6520 11.6518 11.6518 11.6518 11.6518 

 

3.3.2. Vibration analysis  

The first example is to analyse free vibration of symmetric (00/900/00) and 

unsymmetric (00/900) cross-ply beams (MAT I.3) with various length-to-height ratios 

and BCs. The nondimensional fundamental frequencies are compared with those 

from previous works in Tables 3.4 and 3.5. It is clear that the obtained results agree 

well with earlier works. For symmetric composite beams, the nondimensional 

fundamental frequencies of S-S and C-S BCs are the similar to those of H-H and C-

H BCs, respectively.  
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Table 3.4. Nondimensional fundamental frequency of (00/900/00) beams (MAT I.3, 

E1/E2 = 40).  

L/h Reference    BC   

  S-S H-H C-F C-S C-H C-C 

5 Present 9.208  9.208  4.232  10.239  10.239  11.605  

 Murthy et al. [24]  9.207 - 4.230 10.238 - 11.602 

 Khdeir and Reddy 

[101] 

9.208 - 4.234 10.239 - 11.603 

 Aydogdu [100] 9.207 - 4.234 10.236 - 11.637 

 Vo and Thai [21] 9.206 - - - - - 

 Mantari and Canales [44] 9.208 - 4.221 10.520 - 11.486 

10 Present 13.614  13.614  5.494  16.599  16.599  19.727  

 Murthy et al. [24]  13.611 - 5.491 16.600 - 19.719 

 Khdeir and Reddy 

[101] 

13.614 - 5.495 16.599 - 19.712 

 Vo and Thai [21] 13.607 - - - - - 

 Mantari and Canales [21] 13.610 - 5.490 17.225 - 19.652 

20 Present 16.338  16.338  6.067  22.850  22.850  29.677  

 Aydogdu [100] 16.337 - 6.070 22.907 - 29.926 

 Vo and Thai [21] 16.327 - - - - - 

50 Present 17.462  17.462  6.267  26.669  26.669  37.686  

 Vo and Thai [21] 17.449 - - - - - 
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Table 3.5. Nondimensional fundamental frequency of (00/900) beams (MAT 

I.3, E1/E2 = 40).  

L/h Reference    BC   

  S-S H-H C-F C-S C-H C-C 

5 Present 6.129 7.620 2.383 8.033 8.548 10.030 

 Murthy et al. [24]  6.045 - 2.378 8.033 - 10.011 

 Khdeir and Reddy 

[101] 

6.128 - 2.386 8.033 - 10.026 

 Aydogdu [100] 6.144 - 2.384 8.068 - 10.102 

 Vo and Thai [21] 6.058 - - - - - 

 Mantari and Canales [44] 6.109 - 2.375 8.268 - 9.974 

10 Present 6.945  9.653  2.543  10.130  11.039  13.668  

 Murthy et al. [24]  6.908 - 2.541 10.124 - 13.657 

 Khdeir and Reddy 

[101] 

6.945 - 2.544 10.129 - 13.660 

 Vo and Thai [21] 6.909 - - - - - 

 Mantari and Canales [44] 6.913 - 2.532 10.239 - 13.628 

20 Present 7.219  10.528  2.591  11.051  12.194  15.663  

 Aydogdu [100] 7.218 - 2.590 11.060 - 15.688 

 Vo and Thai [21] 7.204 - - - - - 

50 Present 7.302  10.835  2.605  11.369  12.604  16.430  

 Vo and Thai [21] 7.296 - - - - - 

 

In the second example, the (00/900/00) and (00/900) composite beams with MAT 

II.3 under uniform temperature rise (UTR) is considerd. The fundamental frequencies 

are reported in Table 3.6 for various BCs. Again, the obtained results are close to 

those given by Jun et al. [124]. Fig. 3.2a and 3.2b display the effects of UTR on the 
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fundamental frequency of beams. Obviously, the result decreases with the increase 

of T  up to critical temperatures at which the fundamental frequencies vanish. 

Table 3.6. The fundamental frequency (Hz) of (00/900/00) and (00/900) beams with 

various boundary conditions (MAT II.3). 

Lay-up 0T ( C)  Reference  BC  

   H-H C-H C-C 

(00/900/00) 0 Present 950.2 1245.3 1552.4 

 100  913.5 1215.6 1522.4 

 -100  985.6 1274.3 1571.1 

(00/900) 0 Present 664.3 783.8 1001.2 

  Jun et al. [124] 663.4 783.1 999.6 

 100 Present 621.2 743.8 968.4 

  Jun et al. [124] 621.7 744.5 968.1 

 -100 Present 704.8 821.7 1032.8 

  Jun et al. [124] 702.5 819.7 1030.0 

 

a. 00/900/00        b. 00/900 

Figure 3.1. Variation of fundamental frequency of (00/900/00) and (00/900) beams 

(MAT II.3) with respect to uniform temperature rise ∆T. 

3.3.3. Buckling analysis  
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In the first example, the buckling of laminated composite beam under mechanical 

loads is considered. Tables 3.7, 3.8 and 7.9 presented the critical buckling load of 

cross-ply (00/900/00; 00/900) and angle-ply composite beams (MAT I.3) with various 

length-to-height ratios and BCs. The present results are very close with published 

results.  

Table 3.7. Nondimensional critical buckling load of (00/900/00) beams (MAT I.3, 

E1/E2 = 40).  

L/h Reference    BC   

  S-S H-H C-F C-S C-H C-C 

5 Present 8.613 8.613 4.708 9.814 9.814 11.652 

 Mantari and Canales [44] 8.585 - 4.673 10.192 - 11.502 

 Khdeir and Reddy [117] 8.613 - 4.708 9.814 - 11.602 

10 Present 18.832 18.832 6.772 25.857 25.857 34.453 

 Mantari and Canales [44] 18.796 - 6.757 27.090 - 34.365 

 Khdeir and Reddy [117] 18.832 - 6.772 25.857 - 34.453 

50 Present 30.906 30.906 7.886 61.174 61.174 114.398 

 

Table 3.8. Nondimensional critical buckling load of (00/900) beams (MAT I.3, 

E1/E2 = 40).  

L/h Reference    BC   

  S-S H-H C-F C-S C-H C-C 

5 Present 3.907 5.923 1.236 5.985 6.772 8.674 

 Aydogdu [48] 3.906 - 1.235 5.984 - - 

 Mantari and Canales [44] 3.856 - 1.221 6.127 - 8.509 

10 Present 4.942 9.379 1.324 9.105 10.982 15.626 

 Mantari and Canales [44] 4.887 - 1.311 - - 15.468 

50 Present 5.406 11.623 1.356 11.005 13.816 21.372 
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Table 3.9. Nondimensional critical buckling load of angle-ply beams (MAT 

I.3, E1/E2 = 40).  

L/h Lay-up Reference BC 

   S-S C-F C-S C-C 

5 00/300/00 Present 9.1024 4.8990 10.4293 12.4407 

  Mantari and Canales [44] 9.0718 4.8633 10.8326 12.2267 

  Canales and Mantari [126] 9.0658 4.5551 10.2878 12.0767 

 00/450/00 Present 8.9391 4.8267 10.2236 12.1725 

  Mantari and Canales [44] 7.6533 4.7909 10.6209 12.0091 

  Canales and Mantari [126] 8.8846 4.4885 10.0813 11.8078 

 00/600/00 Present 8.7762 4.7632 10.0184 11.9091 

  Mantari and Canales [44] 8.7473 4.7275 10.4074 11.7534 

  Canales and Mantari [126] 8.7340 4.4295 9.8755 11.5503 

 00/450/-450/00 Present 8.7744 4.6402 10.0513 11.9418 

  Mantari and Canales [44] 8.7439 4.6034 10.4632 11.7924 

  Canales and Mantari [126] 8.7382 4.3211 9.9177 11.5436 

 00/600/-600/00 Present 8.5432 4.5228 9.7627 11.5639 

  Mantari and Canales [44] 8.5136 4.4857 10.1696 11.4270 

  Canales and Mantari [126] 8.5092 4.2103 9.6311 11.1619 

10 00/300/00 Present 19.5961 6.9620 27.1507 36.4094 

  Mantari and Canales [44] 19.5591 6.9473 28.4236 36.3133 

  Canales and Mantari [126] 19.6135 6.8824 27.1649 36.2597 

 00/450/00 Present 19.3066 6.8743 26.7009 35.7563 

  Mantari and Canales [44] 19.2700 6.8596 27.9582 35.6626 

  Canales and Mantari [126] 19.3191 6.7956 26.7074 35.5977 

 00/600/00 Present 19.0527 6.8110 26.2707 35.1049 

  Mantari and Canales [44] 19.0166 6.7569 27.5149 35.0138 

  Canales and Mantari [126] 19.0597 6.7324 26.2652 34.9327 

 00/450/-450/00 Present 18.5607 6.4894 25.9949 35.0977 

  Mantari and Canales [44] 18.5228 6.4746 27.1980 35.0019 

  Canales and Mantari [126] 18.5976 6.4208 26.0510 35.0047 

 00/600/-600/00 Present 18.0910 6.3255 25.3249 34.1726 

  Mantari and Canales [44] 18.0533 6.3106 26.5014 34.0797 

  Canales and Mantari [126] 18.1286 6.2593 25.3793 34.0846 



44 
 

The next example is to examine the critical buckling temperature of symmetric 

and unsymmetric composite beam with MAT I.3, 1 2/ 10E E  , * *
2 1/ 3   . Tables 

3.10 and 3.11 indicate that the present results are in good agreement with those given 

by Aydogdu [120] and Wattanasakulpong et al. [121].  

Table 3.10. Nondimensional critical buckling temperature of (00/900/00) beams (MAT 

I.3, E1/E2 = 40, 
* *
2 1/ 3   ). 

L/h Reference  BC  

  H-H C-H C-C 

5 Present 0.450 0.551 0.682 

 Khdeir [118] 0.468 0.573 0.710 

10 Present 0.791 1.230 1.798 

 Khdeir [118] 0.823 1.280 1.871 

 Aydogdu [120] 0.790 1.230 1.797 

 Wattanasakulpong et al. [121] 0.791 1.230 1.800 

20 Present 0.979 1.823 3.163 

 Khdeir [118] 1.019 1.897 3.292 

50 Present 1.049 2.111 4.032 

 Khdeir [118] 1.092 2.265 4.196 

 Aydogdu [120] 1.049 2.110 4.030 

Table 3.11. Nondimensional critical buckling temperature of unsymmetric C-C 

beams (MAT I.3, E1/E2 = 20, 
* *
2 1/ 3   ) 

L/h Reference Number of layers 

  2 (00/900) 4 (00/900/00/900) 10 (00/900/…) 

5 Present 0.558 0.678 0.725 

 Aydogdu [120] 0.557 0.677 0.723 

 Khdeir [118] 0.583 0.708 0.756 

10 Present 0.887 1.466 1.616 

 Aydogdu [120] 0.885 1.463 1.513 

 Khdeir [118] 0.926 1.530 1.687 

20 Present 1.045 2.089 2.369 
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 Aydogdu [120] 1.092 2.079 2.182 

 Khdeir [118] 1.090 2.180 2.472 

50 Present 1.100 2.374 2.727 

 Aydogdu [120] 1.098 2.372 2.721 

 Khdeir [118] 1.148 2.477 2.846 

Finally, the effect of * *
2 1/   and 1 2/E E  ratios on the critical buckling temperature 

is investigated. The nondimensional critical buckling temperature of of (00/900/00) 

and (00/900) composite beams are showed in Table 3.12 and 3.13, respectively. It can 

be seen that a good agreement between the results are found.  

Table 3.12. Nondimensional critical buckling temperature of (00/900) composite 

beams (MAT I.3, / 10L h  ). 

BC 
1 2/E E  * *

2 1/       

  3 10 20 50 100 

H-H 3 0.435 0.193 0.108 0.046 0.024 

 10 0.497 0.306 0.198 0.096 0.051 

 20 0.476 0.349 0.253 0.138 0.079 

 40 0.427 0.356 0.288 0.183 0.114 

C-H 3 0.757 0.337 0.188 0.081 0.041 

 10 0.674 0.415 0.268 0.130 0.070 

 20 0.587 0.430 0.311 0.170 0.097 

 40 0.498 0.416 0.336 0.213 0.133 

C-C 3 1.368 0.608 0.339 0.146 0.075 

 10 1.090 0.671 0.433 0.210 0.113 

 20 0.887 0.650 0.471 0.257 0.147 

 40 0.709 0.592 0.478 0.304 0.189 

 

Figure 3.3 plots the variation of nondimensional critical buckling temperature 

with respect to 
* *
2 1/   of (00/900/00) laminated composite beams with MAT I.3, 

1 2/ 20E E  , / 10L h  . It is found that the results decrease with the increase of 
* *
2 1/   
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Table 3.13. Nondimensional critical buckling temperature of (00/900/00) composite 

beams (MAT I.3, / 10L h  )  

BC 1 2/E E  Reference 
* *
2 1/       

   3 10 20 50 100 

H-H 3 Present 0.637 0.322 0.171 0.084 0.044 

  Aydogdu [120] 0.637 0.323 0.189 0.293 0.153 

 10 Present 0.821 0.576 0.404 0.213 0.119 

  Aydogdu [120] 0.820 0.576 0.404 0.213 0.119 

 20 Present 0.791 0.641 0.504 0.307 0.186 

  Aydogdu [120] 0.791 0.640 0.523 0.307 0.185 

  Khdeir [118] 0.823 0.708 0.590 0.393 0.253 

 40 Present 0.666 0.592 0.512 0.363 0.245 

  Aydogdu [120] 0.666 0.593 0.592 0.363 0.245 

C-H 3 Present 1.226 0.620 0.364 0.162 0.084 

  Aydogdu [120] 1.226 0.619 0.362 0.162 0.207 

 10 Present 1.419 0.996 0.699 0.369 0.206 

  Aydogdu [120] 1.420 0.996 0.698 0.368 0.206 

 20 Present 1.230 0.997 0.784 0.478 0.289 

  Aydogdu [120] 1.234 0.997 0.783 0.477 0.289 

  Khdeir [118] 1.280 1.101 0.918 0.612 0.393 

 40 Present 0.914 0.813 0.703 0.499 0.336 

  Aydogdu [120] 0.918 0.816 0.705 0.500 0.337 

C-C 3 Present 2.212 1.119 0.656 0.293 0.152 

  Aydogdu [120] 1.994 1.007 0.590 0.263 0.137 

 10 Present 2.278 1.599 1.122 0.592 0.331 

  Aydogdu [120] 2.090 1.467 1.028 0.542 0.302 

 20 Present 1.798 1.456 1.145 0.698 0.423 

  Aydogdu [120] 1.804 1.462 1.148 0.699 0.423 

  Khdeir [118] 1.871 1.609 1.341 0.894 0.575 

 40 Present 1.218 1.083 0.936 0.665 0.448 

  Aydogdu [120] 1.229 1.092 0.944 0.670 0.451 
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Figure 3.2. Effect of 
* *
2 1/  ratio on nondimensional critical buckling temperature of 

(00/900/00) composite beams (MAT I.3, E1/E2 = 20, / 10L h  ). 

3.4. Conclusions 

The new hybrid approximation functions are proposed to study the mechanical 

and thermal buckling and free vibration behaviours of laminated composite beams 

using a HOBT. Numerical results for different boundary conditions are obtained to 

examine the effects of material anisotropy, length-to-height ratio, thermal expansion 

ratio and temperature changes on the buckling load and buckling temperature as well 

as natural frequencies of composite beams. The results indicate as followings: 

- Thermal load is significant to behaviours of buckling and vibration of 

lamianated composite beams. The increase of temperatures makes beams be 

more flexible. Therefore, the fundamental frequency and critical buckling load 

reduce.  

- The proposed solution is not only good convergence but also simple and 

effecient for the buckling and vibration analysis of laminated composite beams 

under thermal and mechanical loadings. 
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 Chapter 4.  EFFECT OF TRANSVERSE NORMAL STRAIN ON 

BEHAVIOURS OF LAMINATED COMPOSITE BEAMS 5 

4.1. Introduction 

In Chapter Two and Three, HOBT is used to analyse bending, buckling and 

vibration behaviours of laminated composite beams under mechanical and thermal 

loadings. Although HOBT has attracted huge attention for the researchers [69, 79-

82], it neglected transverse normal strain. For this reason, quasi-3D theories [36, 83-

85] were developed based on higher-order variations of both in-plane and out-of-

plane displacements.  

For computational methods, many analytical and numerical approaches have been 

proposed to analyse behaviours of laminated composite beams and only some of them 

are mentioned here. Zenkour [36] used Navier solution for bending analysis of cross-

ply laminated and sandwich beams. Aydogdu [47, 48, 100] developed Ritz method 

for buckling and vibration analysis of laminated composite beams. Mantari and 

Canales [44, 126] also analysed the vibration and buckling of laminated beams by 

using the Ritz method. Khdeir and Reddy [101, 117] developed state space approach 

for the vibration and buckling analysis of cross-ply laminated beams. Finite element 

method has widely used to analyse static, dynamic and buckling of composite beams 

[19-28, 33]. In addition, dynamic stiffness matrix method was used by Jun et al. [32] 

for the vibration analysis of composite beams. Shao et al. [127] used the method of 

reverberation ray matrix to analyse free vibration of laminated beams with general 

boundary conditions. Natural frequency of laminated composite beams was also 

examined by experiments ([128], [129]).   

Although Ritz method is efficient to analyse the behaviours of composite beams 

with various boundary conditions, the available literature indicate that the number of 

researches used the Ritz method is still limited. Among them, only few research 

investigated the effect of transverse normal strain on static, vibration and buckling of 

                                                      
5 A slightly different version of this chapter has been published in International Journal of Structural Stability 
and Dynamics in 2018 
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laminated composite beams. On the other hand, most of above studies focused on 

cross-ply composite beams, which is a special case of the general laminated ones. 

Unlike the cross-ply laminated beams, angle-ply laminated beams have the coupling 

between out-of-plane stresses and strains. Therefore, the study of composite beams 

with arbitrary lay-ups is necessary and has practical significance.   

The objective of this Chapter is to propose new Ritz-method-based analytical 

solutions for static, vibration and buckling analysis of general laminated composite 

beams based on a quasi-3D theory which accounts for a higher-order variation of the 

axial and transverse displacements. The governing equations of motion are derived 

by using Lagrange’s equations. The convergence and verification studies are carried 

out to demonstrate the accuracy of the present study. Numerical results are presented 

to investigate the effects of transverse normal strain, length-to-height ratio, fibre 

angle, Poisson’s ratio and material anisotropy on the deflections, stresses, natural 

frequencies and buckling loads of laminated composite beams.  

4.2. Theoretical formulation 

4.2.1. Kinetic, strain and stress relations 

Consider a laminated composite beam, which is defined in Chapter Two (Fig. 

2.1). The displacement field of composite beams is given by [36]: 

 2 3 01 2
0 1 12

1 4 1
( , , ) ( , ) ( , ) ( , )

2 3 3

ww w
u x z t u x t zu x t z z u x t

x h x x

    
            

 (4.1) 

 2
0 1 2( , , ) ( , ) ( , ) ( , )w x z t w x t zw x t z w x t    (4.2) 

where 0 ( , )u x t and 0 ( , )w x t  are the axial and transverse displacements of mid-plan of 

the beam, respectively; 1( , )u x t  is the rotation of a transverse normal about the y-axis; 

1( , )w x t and 2 ( , )w x t  are additional higher-order terms. The present theory therefore 

holds five variables to be determined.  

The strain field of beams is given by: 

 (0) (1) 2 (2) 3 (3)
x x x x x

u
z z z

x
    


    


 (4.3) 
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The elastic strain and stress relations of thk -layer of quasi-3D theory are given by: 
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 (4.8) 

where 11C , 13C , 33C , 55C  are indicated in Appendix A. If the transverse normal 

stress is omitted ( 0z  ), the strain and stress relations of HOBT are recovered as: 
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 (4.9) 

where *
11C  and *

55C are showed in Appendix A. It should be noted that for HOBT, the 

higher-order terms ( 1( , )w x t  and 2 ( , )w x t ) will be vanished. 

4.2.2. Variational formulation  

The strain energy E  of beam is given by: 
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where the stiffness coefficients of the beam are determined as follows:  
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The work done W  by compression load 0N  and transverse load q  applied on the 

beam bottom surface is given by: 
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The kinetic energy K  of beam is written by: 
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where dot-superscript denotes the differentiation with respect to the time t ;   is the 

mass density of each layer, and 1I , 3I , 5I , 7I  are the inertia coefficients defined by:  
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The total potential energy of system is expressed by: 

 E W K       (4.18) 

Based on the Ritz method, the displacement field in Eq. (4.1 and 4.2) is 

approximated in the following forms: 
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where  is the frequency; 2 1i    the imaginary unit; 0 ju , 1 ju , 0 jw , 1 jw , 2 jw  are 

unknown values to be determined; ( )j x  are the approximation functions. The 

approximation functions of Ritz method should satisfy the specified essential 

boundary conditions [1]. In this Chapter, the new approximation functions which 

combine polynomial and exponential functions are proposed. These approximation 

functions are given in Table 4.1 for S-S, C-C and C-F boundary conditions. 
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Table 4.1. Approximation functions and kinematic BCs of beams. 

 

The governing equations of motion can be obtained by substituting Eqs. (4.19-

4.23) into Eq. (4.18) and using Lagrange’s equations:  
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j j
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with jq  representing the values of ( 0 ju , 1 ju , 0 jw , 1 jw , 2 jw ), that leads to: 
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where the components of stiffness matrix K, mass matrix M and load vector F are 

given by:  
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Finally, the static, vibration and buckling responses of composite beams can be 

determined by solving Eq. (4.25).  
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4.3. Numerical results 

In this section, convergence and verification studies are carried out to demonstrate 

the accuracy of the present study. For static analysis, the beam is subjected to a 

uniformly distributed load with density q , applied on the surface / 2z h   in the z -

direction. Laminates are supposed to have equal thicknesses and made of the same 

orthotropic materials whose properties are given in Table 4.2. For convenience, the 

following nondimensional terms are used: 
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Table 4.2. Material properties of laminated composite beams. 

Material 

properties 

MAT I.4 

[100]  

MAT II.4  

[69] 

MAT III.4  

[84, 128] 

MAT IV.4 

[78] 

E1 (GPa) E1/E2=open E1/E2=25 129.11  144.8 

E2=E3(GPa)   - - 9.408 9.65  

G12=G13 

(GPa) 

0.6E2 0.5E2 5.1568 4.14  

G23 (GPa) 0.5E2 0.2E2 3.45 3.45 

12=13=23 0.25 0.25 0.3 0.3 

 (kg/m3) - - 1550.1 - 

L (m) L/h=open L/h=open 0.1905 L/h=15 

h (m) - - 0.003175 - 

b (m) - - 0.0127 - 

 

The composite beams (MAT I.4, 00/900, / 5L h  , 1 2/ 40E E  ) with different BCs 

are considered to evaluate the convergence. The nondimensional fundamental 
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frequencies, critical buckling loads and mid-span displacements with respect to the 

series number m  are given in Table 4.3. It can be seen that the present results 

converge at 12m   for natural frequency and critical buckling load, and 14m   for 

deflection. Thus, these numbers of series terms are chosen for analysis. 

Table 4.3. Convergence studies for the nondimensional fundamental frequencies, 

critical buckling loads and mid-span displacements of (00/900) composite beams 

(MAT I.4, / 5L h  , E1/E2 = 40). 

BC    m    

 2 4 6 8 10 12 14 

a. Fundamental frequency 

S-S 6.3764 6.1406 6.1400 6.1400 6.1400 6.1400 6.1400 

C-F 2.5879 2.3927 2.3845 2.3824 2.3820 2.3819 2.3819 

C-C 10.3078 10.0566 9.9881 9.9650 9.9519 9.9435 9.9382 

b. Critical buckling load 

S-S 4.1943 3.9217 3.9211 3.9211 3.9211 3.9211 3.9211 

C-F 1.2668 1.2365 1.2341 1.2334 1.2333 1.2333 1.2333 

C-C 8.8169 8.6247 8.6167 8.6160 8.6156 8.6154 8.6153 

c. Deflection 

S-S 3.0041 3.2540 3.2481 3.2490 3.2488 3.2488 3.2488 

C-F 6.9948 10.3704 10.4354 10.5022 10.4986 10.5079 10.5056 

C-C 1.1999 1.2008 1.2440 1.2369 1.2473 1.2442 1.2455 

4.3.1. Cross-ply beams  

The symmetric (00/900/00) and un-symmetric (00/900) beams with different length-

to-height ratios and BCs are considered in this example. The nondimensional 

fundamental frequencies, critical buckling loads and mid-span displacements 

 / 2, 0x L z   of beams are presented in Tables 4.4, 4.5 and 4.6, respectively. The 

present results are compared with those from previous works using the HOBT [21, 

24, 48, 69, 100, 101, 117] and the quasi-3D theories [20, 36, 44, 83]. It can be seen 

that the present results comply with earlier ones for both theories. It is also observed 
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that there are differences of the results predicted by HOBT and quasi-3D, especially 

for un-symmetric and thick beams ( /L h 5). For slender beams ( /L h 50), however, 

the predictions by HOBT and quasi-3D are close to each other. 

Table 4.4. Nondimensional fundamental frequencies of (00/900/00) and (00/900) 

composite beams (MAT I.4, E1/E2 = 40). 

Theory Reference 0 0 00 / 90 / 0  0 00 / 90  

  L/h=5 50 L/h=5 50 

a. S-S boundary condition     

HOBT Present  9.206 17.449 6.125 7.297 

 Khdeir and Reddy [101] 9.208 - 6.128 - 

 Vo and Thai [21] 9.206 17.449 6.058 7.296 

 Murthy et al. [24]  9.207 - 6.045 - 

 Aydogdu [100] 9.207 - 6.144 - 

Quasi-3D Present 9.208 17.449 6.140 7.297 

 Mantari and Canales [44] 9.208 - 6.109 - 

 Matsunaga [83] 9.200 - 5.662 - 

b. C-F boundary condition     

HOBT Present  4.230 6.262 2.381 2.603 

 Khdeir and Reddy [101] 4.234 - 2.386 - 

 Murthy et al. [24] 4.230 - 2.378 - 

 Aydogdu [100] 4.234 - 2.384 - 

Quasi-3D Present 4.223 6.262 2.382 2.604 

 Mantari and Canales [44] 4.221 - 2.375 - 

c. C-C boundary condition     

HOBT Present  11.601 37.629 10.019 16.414 

 Khdeir and Reddy [101] 11.603 - 10.026 - 

 Murthy et al. [24] 11.602 - 10.011 - 

 Aydogdu [100] 11.637 - 10.103 - 

Quasi-3D Present 11.499 37.633 9.944 16.432 

 Mantari and Canales [44] 11.486 - 9.974 - 
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Table 4.5. Nondimensional critical buckling loads of (00/900/00) and (00/900) 

composite beams (MAT I.4, E1/E2 = 40). 

Theory Reference 0 0 00 / 90 / 0  0 00 / 90   

  L/h=5 50 L/h=5 50 

a. S-S boundary condition     

HOBT Present  8.609 30.859 3.902 5.398 

 Khdeir and Reddy [117] 8.613 - - - 

 Aydogdu [48] 8.613 - 3.906 - 

Quasi-3D Present 8.613 30.860 3.921 5.398 

 Mantari and Canales [44]  8.585 - 3.856 - 

b. C-F boundary condition     

HOBT Present 4.704 7.873 1.234 1.353 

 Khdeir and Reddy [117] 4.708 - - - 

 Aydogdu [48] 4.708 - 1.236 - 

Quasi-3D Present 4.699 7.874 1.233 1.354 

 Mantari and Canales [44]  4.673 - 1.221 - 

c. C-C boundary condition     

HOBT Present 11.648 114.237 8.668 21.339 

 Khdeir and Reddy [117] 11.652 - - - 

Quasi-3D Present 11.652 114.260 8.615 21.371 

 Mantari and Canales [44]  11.502 - 8.509 - 
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Table 4.6. Nondimensional mid-span displacements of (00/900/00) and (00/900) 

composite beams under a uniformly distributed load (MAT II.4). 

Theory Reference 0 0 00 / 90 / 0   0 00 / 90  

  L/h=5 10 50 L/h=5 10 50 

a. S-S boundary condition       

HOBT Present  2.414 1.098 0.666 4.785 3.697 3.345 

 Murthy et al.  [24] 2.398 1.090 0.661 4.750 3.668 3.318 

 Khdeir and Reddy 

[69] 

2.412 1.096 0.666 4.777 3.688 3.336 

Quasi-3D Present  2.405 1.097 0.666 4.764 3.694 3.345 

 Zenkour [36] 2.405 1.097 0.666 4.828 3.763 3.415 

 Mantari and Canales 

[20] 

- 1.097 - - 3.731 -  

b. C-F boundary condition       

HOBT Present  6.830 3.461 2.257 15.308 12.371 11.365 

 Murthy et al. [24] 6.836 3.466 2.262 15.334 12.398 11.392 

 Khdeir and Reddy 

[69] 

6.824 3.455 2.251 15.279 12.343 11.337 

Quasi-3D Present 6.844 3.451 2.256 15.260 12.339 11.343 

 Mantari and Canales 

[20] 

- 3.459 - - 12.475 - 

c. C-C boundary condition       

HOBT Present  1.538 0.532 0.147 1.924 1.007 0.680 

 Khdeir and Reddy 

[69] 

1.537 0.532 0.147 1.922 1.005 0.679 

Quasi-3D Present  1.543 0.532 0.147 1.916 1.005 0.679 

 Mantari and Canales 

[20] 

- 0.532 - - 1.010 - 

 

The nondimensional axial, transverse shear, and transverse normal stresses of 

simply supported beams with / 5,50L h   are presented in Table 4.7, and compared 
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to the solutions obtained by Vo and Thai [22] using HOBT and Mantari and Canales 

[20], Zenkour [36] using quasi-3D theory. Good agreements with the previous models 

are also found. 

Table 4.7. Nondimensional stresses of (00/900/00) and (00/900) composite beams with 

S-S boundary condition under a uniformly distributed load (MAT II.4). 

Theory Reference 0 0 00 / 90 / 0  0 00 / 90   

  L/h=5 50 L/h=5 50 

a. Normal axial stress     

HOBT Present  1.0669 0.8705 0.2361 0.2336 

 Zenkour [36] 1.0669 0.7805 0.2362 0.2336 

 Vo and Thai [22] 1.0670 - 0.2361 - 

Quasi-3D Present 1.0732 0.7806 0.2380 0.2336 

 Zenkour [36] 1.0732 0.7806 0.2276 0.2236 

b. Shear stress     

HOBT Present  0.4057 0.4523 0.9205 0.9878 

 Zenkour [36] 0.4057 0.4514 0.9211 0.9860 

 Vo and Thai [22] 0.4057 - 0.9187 - 

Quasi-3D Present  0.4013 0.4521 0.9052 0.9869 

 Zenkour [36] 0.4013 0.4509 0.9038 0.9814 

c. Transverse normal stress     

Quasi-3D Present 0.1833 0.1804 0.2966 0.3046 

 Zenkour [36] 0.1833 0.1804 0.2988 0.2983 

 

The distribution of nondimensional transverse displacements across the 

thickness direction for / 5,10,50L h   is displayed in Figs. 4.1-4.3. It is observed that 

the nonlinear variation of transverse displacement is clearly displayed for thick 

beams ( / 5L h  ) with all BCs.  
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    a. 00/900                                                   b. 00/900/00 

Figure 4.1. Distribution of nondimensional transverse displacement through the 

thickness of (00/900) and (00/900/00) composite beams with S-S boundary condition 

(MAT II.4). 

 

                                 a. 00/900                                                  b. 00/900/00 

Figure 4.2. Distribution of nondimensional transverse displacement through the 

thickness of (00/900) and (00/900/00) composite beams with C-F boundary condition 

(MAT II.4). 
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         a. 00/900                                              b. 00/900/00 

Figure 4.3. Distribution of nondimensional transverse displacement through the 

thickness of (00/900) and (00/900/00) composite beams with C-C boundary condition 

(MAT II.4). 

4.3.2. Angle-ply beams  

This example is extended from previous one. The ( 0 00 / / 0 ) and ( 00 / ) 

beams are considered. Tables 4.8, 4.9, 4.10 and 4.11 present variation of 

nondimensional fundamental frequencies, critical buckling loads, mid-span 

displacements ( / 2, 0x L z  ) and stresses of beams used Quasi-3D theory respect 

to the angle-ply of beams. It can be seen that the present results in Table 4.10 and 

4.11 are close with those of Vo et al. [19]. 
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Table 4.8. Nondimensional fundamental frequencies of (00/ /00) and (00/ ) 

composite beams (MAT I.4, E1/E2 = 40). 

Lay-up BC L/h Angle-ply ( )   

   00 300 600 900 

00/ /00 S-S 5 9.5498 9.4487 9.2831 9.2083 

  10 13.9976 13.8130 13.6729 13.6099 

  50 17.7844 17.4788 17.4558 17.4493 

 C-F 5 4.3628 4.3047 4.2484 4.2231 

  10 5.6259 5.5403 5.5059 5.4909 

  50 6.3803 6.2697 6.2635 6.2622 

 C-C 5 12.0240 11.8341 11.6020 11.4992 

  10 20.4355 20.1923 19.8335 19.6723 

  50 38.4410 37.8172 37.6863 37.6333 

00/  S-S 5 9.5498 6.8336 6.2215 6.1400 

  10 13.9976 7.9772 7.0561 6.9475 

  50 17.7844 8.5069 7.4191 7.2971 

 C-F 5 4.3628 2.7077 2.4173 2.3819 

  10 5.6259 2.9428 2.5837 2.5428 

  50 6.3803 3.0359 2.6474 2.6043 

 C-C 5 12.0240 10.4823 10.0347 9.9435 

  10 20.4355 15.0934 13.8389 13.6637 

  50 38.4410 19.0914 16.6995 16.4323 
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Table 4.9. Nondimensional critical buckling loads of (00/ /00) and (00/ ) composite 

beams (MAT I.4, E1/E2 = 40). 

Lay-up BC L/h Angle-ply ( )   

   00 300 600 900 

00/ /00 S-S 5 9.2665 9.0709 8.7542 8.6131 

  10 19.9125 19.3911 18.9974 18.8217 

  50 32.0563 30.9641 30.8826 30.8596 

 C-F 5 4.9708 4.8413 4.7432 4.6994 

  10 7.0644 6.8417 6.7856 6.7622 

  50 8.1715 7.8897 7.8762 7.8739 

 C-C 5 12.7118 12.3736 11.8718 11.6517 

  10 37.0660 36.2838 35.0169 34.4524 

  50 119.0990 115.2235 114.5322 114.2601 

00/  S-S 5 9.2665 4.8298 4.0242 3.9211 

  10 19.9125 6.5116 5.1007 4.9455 

  50 32.0563 7.3361 5.5800 5.3981 

 C-F 5 4.9708 1.6246 1.2717 1.2333 

  10 7.0644 1.7845 1.3672 1.3236 

  50 8.1715 1.8418 1.3998 1.3543 

 C-C 5 12.7118 9.6517 8.7780 8.6154 

  10 37.0660 19.3221 16.1028 15.6927 

  50 119.0990 28.8970 22.0782 21.3712 
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Table 4.10. Nondimensional mid-span displacements of (00/ /00) and (00/ ) 

composite beams under a uniformly distributed load (MAT II.4). 

Lay-up BC L/h Reference Angle-ply ( )   

    00 300 600 900 

00/ /00 S-S 5 Present  1.7930 2.0140 2.3030 2.4049 

   Vo et al. [19] 1.7930 2.0140 2.3030 2.4049 

  10 Present  0.9222 0.9946 1.0700 1.0965 

   Vo et al. [19] 0.9222 0.9946 1.0700 1.0965 

  50 Present  0.6370 0.6608 0.6650 0.6661 

   Vo et al. [19] 0.6370 0.6608 0.6650 0.6661 

 C-F 5 Present  5.2683 5.8705 6.5930 6.8442 

   Vo et al. [19] 5.2774 5.8804 6.6029 6.8541 

  10 Present  2.9647 3.1810 3.3871 3.4511 

   Vo et al. [19] 2.9663 3.1828 3.3889 3.4605 

  50 Present  2.1599 2.2402 2.2529 2.2562 

   Vo et al. [19] 2.1602 2.2405 2.2531 2.2565 

 C-C 5 Present  1.0866 1.2616 1.4711 1.5431 

   Vo et al. [19] 1.0998 1.2670 1.4766 1.5487 

  10 Present  0.3958 0.4459 0.5098 0.5323 

   Vo et al. [19] 0.3968 0.4469 0.5108 0.5332 

  50 Present  0.1367 0.1431 0.1462 0.1473 

   Vo et al. [19] 0.1367 0.1431 0.1462 0.1472 

00/  S-S 5 Present  1.7930 3.6681 4.6312 4.7645 

   Vo et al. [19] 1.7930 3.6634 4.6135 4.7346 

  10 Present  0.9222 2.7463 3.6070 3.6942 

   Vo et al. [19] 0.9222 2.7403 3.5871 3.6626 

  50 Present  0.6370 2.4454 3.2725 3.3446 

   Vo et al. [19] 0.6370 2.4406 3.2540 3.3147 

 C-F 5 Present  5.2683 11.6981 14.8708 15.2595 
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Lay-up BC L/h Reference Angle-ply ( )   

    00 300 600 900 

   Vo et al. [19] 5.2774 11.6830 14.8020 15.1540 

  10 Present  2.9647 9.1667 12.0630 12.3387 

   Vo et al. [19] 2.9663 9.1499 12.0020 12.2440 

  50 Present  2.1599 8.3044 11.1059 11.3428 

   Vo et al. [19] 2.1602 8.2916 11.0540 11.2580 

 C-C 5 Present  1.0866 1.5673 1.8524 1.9164 

   Vo et al. [19] 1.0998 1.5755 1.8575 1.9193 

  10 Present  0.3958 0.7797 0.9771 1.0050 

   Vo et al. [19] 0.3968 0.7783 0.9726 0.9983 

  50 Present  0.1367 0.4987 0.6646 0.6790 

   Vo et al. [19] 0.1367 0.4974 0.6608 0.6733 

 

Table 4.11. Nondimensional stresses of (00/ /00) and (00/ ) composite beams with 

S-S boundary condition under a uniformly distributed load (MAT II.4). 

Lay-up L/h Reference Angle-ply ( )   

   00 300 600 900 

a. Normal axial stress    

00/ /00 5 Present  0.9556 1.0062 1.0556 1.0732 

  Vo et al. [19] 0.9498 1.0010 1.0500 1.0670 

 10 Present  0.7998 0.8325 0.8459 0.8504 

  Vo et al. [19] 0.8002 0.8326 0.8459 0.8502 

 50 Present  0.7520 0.7785 0.7803 0.7806 

  Vo et al. [19] 0.7523 0.7788 0.7806 0.7809 

00/  5 Present  0.9556 0.3736 0.2476 0.2380 

  Vo et al. [19] 0.9498 0.3746 0.2510 0.2428 

 10 Present  0.7998 0.3655 0.2445 0.2346 
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Lay-up L/h Reference Angle-ply ( )   

   00 300 600 900 

  Vo et al. [19] 0.8002 0.3661 0.2464 0.2375 

 50 Present  0.7520 0.3631 0.2436 0.2336 

  Vo et al. [19] 0.7523 0.3633 0.2449 0.2358 

b. Shear stress    

00/ /00 5 Present  0.6668 0.5721 0.4456 0.4013 

  Vo et al. [19] 0.6679 0.5729 0.4462 0.4017 

 10 Present  0.7078 0.6070 0.4751 0.4286 

  Vo et al. [19] 0.7100 0.6088 0.4762 0.4295 

 50 Present  0.7439 0.6377 0.5006 0.4521 

  Vo et al. [19] 0.7434 0.6373 0.5003 0.4518 

00/  5 Present  0.6668 0.7545 0.8646 0.9052 

  Vo et al. [19] 0.6679 0.7598 0.8703 0.9117 

 10 Present  0.7078 0.7902 0.9046 0.9476 

  Vo et al. [19] 0.7100 0.7913 0.9039 0.9474 

 50 Present  0.7439 0.8234 0.9418 0.9869 

  Vo et al. [19] 0.7434 0.7434 0.8085 0.8481 

 

Figs. 4.4-4.6 show the displacements of the ( 0 00 / / 0 ) and ( 00 / ) thick beams 

 / 3L h   increase with the increase of angle-ply . There are significant differences 

between the results of HOBT and quasi-3D solutions.  
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Figure 4.4. The nondimensional mid-span transverse displacement with respect to 

the fiber angle change of composite beams with S-S boundary condition ( / 3L h  , 

MAT II.4). 

 

 

0 10 20 30 40 50 60 70 80 90
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8


o

N
o
n
d
im

e
n
s
io

n
a
l t

ra
n
s
v
e
rs

e
 d

is
p
la

c
e
m

e
n
t

 

 

HOBT, 0o/
o/0o

Quasi-3D, 0o/
o/0o, z=0

Quasi-3D, 0o/
o/0o, z=-h/2

HOBT, 0o/
o

Quasi-3D,0o/
o, z=0

Quasi-3D, 0o/
o, z=-h/2



69 
 

 

Figure 4.5. The nondimensional mid-span transverse displacement with respect to the 

fiber angle change of composite beams with C-F boundary condition ( / 3L h  , MAT 

II.4). 
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Figure 4.6. The nondimensional mid-span transverse displacement with respect to the 

fiber angle change of composite beams with C-C boundary condition ( / 3L h  , 

MAT II.4). 

4.3.3. Arbitrary-ply beams  

The example aims to analyse behaviours of composite beams with arbitrary-ply. 

The first, the symmetric single-layered C-F beams of 150 and 300 ply (MAT III.4) are 

considered. Their first four natural frequencies are displayed in Table 4.12 and 

compared with those from Chen et al. [84] and experiment results of Abarcar and 

Cunniff [128]. It is seen that there is consistency between present results and those 

from [84] and [128], especially the first mode of vibration.  
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Table 4.12. Fundamental frequencies (Hz) of single-layer composite beam with C-F 

boundary condition (MAT III.4). 

Lay

-up 

Theory Reference Mode    

   1 2 3 4 

150 HOBT Present  82.19 512.86 1426.29 - 

 Quasi-3D Present 82.22 513.09 1427.12 - 

  Chen et al. [84] 82.55 515.68 1437.02 - 

 Experiment Abarcar and Cunniff [128] 82.50 511.30 1423.40 1526.90* 

300 HOBT Present 52.63 329.13 918.51 1791.22 

 Quasi-3D Present 52.67 329.43 919.48 1793.62 

  Chen et al. [84] 52.73 330.04 922.45 1803.01 

 Experiment Abarcar and Cunniff [128] 52.70 331.80 924.70 1766.90 

Note: ‘*’ denotes: the results are the torsional mode 

Table 4.13. Nondimensional fundamental frequencies of arbitrary-ply laminated 

composite beams (MAT IV.4). 

Lay-up Theory Reference BC   

   S-S C-F C-C 

450/-450/450/-450 HOBT Present  0.7961 0.2849 1.7592 

  Chandrashekhara 

and Bangera [27] 

0.8278 0.2962 1.9807 

 Quasi-3D Present 0.7962 0.2852 1.7629 

  Chen et al. [84] 0.7998 0.2969 1.8446 

300/-500/500/-300 HOBT Present  0.9726 0.3486 2.1255 

 Quasi-3D Present 0.9728 0.3489 2.1281 

  Chen et al. [84] 0.9790 0.3572 2.2640 

Next, the un-symmetric (450/-450/450/-450) and (300/-500/500/-300) beams (MAT 

IV.4) with various BCs are considered, and their responses on fundamental 

frequencies are reported in Table 4.13. Good agreements of the present theory and 
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previous studies are again found. Finally, the symmetric  /
s

   composite beams 

(MAT IV.4) are considered.   

The effects of angle-ply variation on the frequency, buckling and displacement 

are again illustrated in Table 4.14. In addition, the nondimensional fundamental 

frequencies are also shown in Fig. 4.7. It can be seen that the present frequencies are 

closer to those of [47, 84] and smaller than to those of [78, 130] which neglected the 

Poisson’s effect, especially for beams with arbitrary-ply. This phenomenon can be 

explained as follows. In present study, Poisson’s effect is incorporated in the 

constitutive equations by assuming 0y xy yz     . It means that the strains ( y , yz

, xy ) are nonzero. For beams with arbitrary-ply (300), when the Poisson’s effect is 

considered, the beam’s stiffness constants are much smaller than when the Poisson’s 

effect is neglected. This causes beams more flexible [85]. It leads to the conclusion 

that the Poisson’s effect is quite significant to the arbitrary-ply laminated beams, and 

that the neglect of this effect is only suitable for the cross-ply laminated beams. It 

should be also noted that there is deviation between the present critical buckling load 

and those from Wang et al. [33]. This situation occurred because Wang et al. [33] 

mentioned the rotation of the normal to the mid-plane in y -direction in displacement 

field.  

Table 4.14. Nondimensional fundamental frequencies, critical buckling loads and 

mid-span displacements of  /
s

   composite beams (MAT IV.4). 

BC Theory Reference Angle-ply ( )   

   00 300 600 900 

a. Fundamental frequency      

S-S HOBT Present 2.649 0.999 0.731 0.729 

  Aydogdu [47]  2.651 1.141 0.736 0.729 

  Nguyen et al. [130] 2.656 2.103 1.012 0.732 

 FOBT Chandrashekhara et al. [78] 2.656 2.103 1.012 0.732 

 Quasi-3D Present 2.650 0.999 0.731 0.730 
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BC Theory Reference Angle-ply ( )   

   00 300 600 900 

C-F HOBT Present  0.980 0.358 0.261 0.261 

  Aydogdu [47]  0.981 0.414 0.262 0.260 

  Nguyen et al. [130] 0.983 0.768 0.363 0.262 

 FOBT Chandrashekhara et al. [78] 0.982 0.768 0.363 0.262 

 Quasi-3D Present  0.980 0.358 0.262 0.262 

C-C HOBT Present  4.897 2.180 1.620 1.615 

  Aydogdu [47]  4.973 2.195 1.669 1.619 

  Nguyen et al. [130] 4.912 4.131 2.202 1.621 

 FOBT Chandrashekhara et al. [78] 4.849 4.098 2.198 1.620 

 Quasi-3D Present  4.901 2.183 1.626 1.625 

  Chen et al. [84] 4.858 2.345 1.671 1.623 

b. Critical buckling load     

S-S HOBT Present 10.709 1.522 0.816 0.813 

 Quasi-3D  10.713 1.523 0.816 0.813 

C-F HOBT Present 2.973 0.386 0.206 0.205 

 Quasi-3D  2.974 0.387 0.206 0.206 

 FOBT Wang et al. [33] 2.971 0.712 0.208 0.205 

C-C HOBT Present 30.689 5.747 3.154 3.136 

 Quasi-3D  30.726 5.758 3.168 3.160 

 FOBT Wang et al. [33] 30.592 10.008 3.187 3.136 

c. Mid-span displacement     

S-S HOBT Present 1.196 8.437 15.745 15.811 

 Quasi-3D  1.195 8.432 15.733 15.796 

C-F HOBT  3.987 28.611 53.452 53.675 

 Quasi-3D  3.983 28.570 53.170 53.208 

C-C HOBT  0.355 1.815 3.289 3.308 

 Quasi-3D  0.355 1.812 3.272 3.276 
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Figure 4.7. Effects of the fibre angle change on the nondimensional fundamental 

frequency of  /
s

   composite beams (MAT IV.4). 

4.4. Conclusions 

The new approximation functions which combined polynomial and exponential 

functions are presented to study the free vibration, buckling and static behaviours of 

laminated composite beams. The displacement field is based on a quasi-3D theory 

accounting for a higher-order variation of both axial and transverse displacements. 

Poisson’s effect is incorporated in beam model. Numerical results for different BCs 

are obtained to compare with previous studies and investigate effects of material 

anisotropy, Poisson’s ratio and angle-ply on the natural frequencies, buckling loads, 

displacements and stresses of composite beams. The obtained results show that: 

- The transverse normal strain effects are significant for un-symmetric and thick 

beams.  
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- The Poisson’s effect is quite significant to the laminated beams with arbitrary 

lay-up, and the neglect of this effect is only suitable for the cross-ply laminated 

beams.  

- The present model is found to be appropriate for vibration, buckling and 

bending analysis of cross-ply and arbitrary-ply composite beams.  
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 Chapter 5. SIZE DEPENDENT BEHAVIOURS OF MICRO GENERAL 

LAMINATED COMPOSITE BEAMS BASED ON MODIFIED COUPLE 

STRESS THEORY 6 

5.1. Introduction 

In Chapters Two, Three and Four, the macro composite beams are analysed using 

classical continuum mechanics theories. However, the use of composite materials 

with microstructure in micro-electro-mechanical systems such as microswitches and 

microrobots has recently motivated many researchers [131-133] to study the 

behaviour materials in order of micron and sub-micron. The results obtained by these 

studies show that the classical continuum mechanics theories can not describe the 

behaviour of such micro-structures due to their size dependencies. 

A review of non-classical continuum mechanics models for size-dependent 

analysis of small-scale structures can be found in [134]. These models for size-

dependent analysis can be divided into three groups: nonlocal elasticity theory, micro 

continuum theory and strain gradient family. Nonlocal elasticity theory was proposed 

by Eringen [3, 135], Eringen and Edelen [136], and its recent applications can be 

found in [137-140]. In this theory, the stress at a reference point is considered as a 

function of strain field at all points of the body, and thus the size effect is captured by 

means of constitutive equations using a nonlocal parameter. Micro continuum theory 

in which each particle can rotate and deform independently regardless of the motion 

of the centroid of the particle was developed by Eringen [141-143]. The strain 

gradient family is composed of the strain gradient theory [133, 144], the modified 

strain gradient theory [131], the couple stress theories [4-6] and the modified couple 

stress theory (MCST) [145]. In the strain gradient family, both strains and gradient 

of strains are considered in the strain energy. The size effect is accounted for using 

material length scale parameters (MLSP). The MCST introduced an equilibrium 

condition of moments of couples to enforce the couple stress tensor to be symmetric. 

Consequently, MCST needs only one MLSP instead of two as the couple stress 

                                                      
6 A slightly different version of this chapter has been published in Composite Structures in 2018  
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theories, or three as the modified strain gradient theory. This feature makes the MCST 

easier to use and more preferable to capture the size effect because the determination 

of MLSP is a challenging task. 

Chen et al. [12, 146] developed Timoshenko and Reddy beam models to analyse 

the static behaviours of cross-ply simply supported microbeams. Chen and Si [147] 

suggested an anisotropic constitutive relation for the MCST and used global-local 

theory to analyse Reddy beams using Navier solutions. By using a meshless method, 

Roque et al. [10] analysed the static bending response of micro laminated 

Timoshenko beams. A size-dependent zigzag model was also proposed by Yang et 

al. [7] for the bending analysis of cross-ply microbeams. Abadi and Daneshmehr 

[148] analysed the buckling of micro composite beams using Euler-Bernoulli and 

Timoshenko models. Mohammadabadi et al. [37] also predicted the thermal effect on 

size-dependent buckling behaviour of micro composite beams. The generalized 

differential quadrature method was used to solve with different boundary conditions 

(BCs). Chen and Li [149] predicted dynamic behaviours of micro laminated 

Timoshenko beams. Mohammad-Abadi and Daneshmehr [8] used the MCST to 

analyse free vibration of cross-ply microbeams by using Euler-Bernoulli, 

Timoshenko and Reddy beam models. Ghadiri et al. [150] analysed the thermal effect 

on dynamics of thin and thick microbeams with different BCs. Most of the above-

mentioned studies mainly focused on cross-ply microbeams. Therefore, the study of 

micro general laminated composite beams (MGLCB) with arbitrary lay-ups is 

necessary.  

Despite the fact that numerical approaches are used increasingly [10, 21, 50, 137, 

138, 151], Ritz method is still efficient to analyse structural behaviours of beams [44, 

45, 48, 130, 152-155]. In Ritz method, the accuracy and efficiency of solution strictly 

depends on the choice of approximation functions. An inappropriate choice of the 

approximation functions may cause slow convergence rates and numerical 

instabilities [48]. The approximation functions should satisfy the specified essential 

BCs [1]. If this requirement is not satisfied, the Lagrangian multipliers and penalty 
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method can be used to handle arbitrary BCs [44, 126, 156]. However, this approach 

leads to an increase in the dimension of the stiffness and mass matrices and causing 

computational costs. Therefore, the objective of this Chapter is to propose 

approximation functions for Ritz type solutions that give fast convergence rate, 

numerical stability and satisfy the specified BCs. 

In this Chapter, new exponential approximation functions are proposed for the 

size-dependent analysis of MGLCB based on the MCST using a refined shear 

deformation theory. Lagrange’s equations are used to obtain the governing equations 

of motion. The accuracy of the present model is demonstrated by verification studies. 

Numerical results are presented to investigate the effects of MLSP, length-to-height 

ratio and fibre angle on the deflections, stresses, natural frequencies and critical 

buckling loads of micro composite beams with arbitrary lay-ups.  

5.2. Theoretical formulation 

A MGLCB with rectangular cross-section shown in Fig. 5.1 is considered. L ,b  

and h  denote are the length, width and thickness of the beam, respectively. It is 

composed of n  plies of orthotropic materials in different fibre angles with respect to 

the x-axis. 

b

L

h

x

z

y

y'

x'

 

Figure 5.1. Geometry and coordinate of a laminated composite beam. 

5.2.1. Kinematics 

The beam theory used in this Chapter based on HOBT ([89, 90]). The 

displacement field accounts a higher-order variation of axial displacement and meets 
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the traction-free boundary conditions of the transvese shear stress on the top and 

bottom surfaces of the beams: 

 
3

0
0 1 0 0, 12

( , ) 5 5
( , , ) ( , ) ( , ) ( , ) ( ) ( , )

4 3
x

w x t z z
u x z t u x t z u x t u x t zw f z u x t

x h

 
       

  
 (5.1) 

 ( , , ) 0v x z t   (5.2) 

 0( , , ) ( , )w x z t w x t  (5.3) 

where 0 ( , )u x t  and 0 ( , )w x t  are the axial and transverse displacements of a point on 

the beam mid-plane along the x - and z -directions, respectively; 1( , )u x t  is the 

rotation of the cross-section about the y-axis and 
3

2

5 5
( )

4 3

z z
f z

h
   is the shape 

function. The comma indicates a partial differentiation with respect to the 

corresponding subscript coordinate. 

Based on the MCST [145, 149], the rotation displacement about the x -, y -, z -axes 

are determined by:  

  , ,

1
( , , ) 0

2
x y zx z t w v      (5.4) 

    , , , 1 0,

1 1
( , , ) 2

2 2
y z x z xx z t u w f u w      (5.5) 

  , ,

1
( , , ) 0

2
z x yx z t v u     (5.6) 

 

       a. y-z plane fiber cross-section                     b. Fiber within x-z plane 

Figure 5.2. Rotation displacement about the x -, y -axes 

The strain and curvature-strain fields of beams are obtained as [37]:  
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5.2.2. Constitutive relations  

The stress-strain relations for the thk -ply of a laminated beam in global coordinate 

system are expressed as [85]: 
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 (5.11) 

The couple stress moments-curvature relation for the thk -ply of a laminated beam 

can be given by [37]:    
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 (5.12) 

where: 

      * 2 2 2 2 2 2 2 2 2 2 2 2
44 55 1 44 44 1 552kb km kb kmC C m m n C n m n m n C C          (5.13) 

  * 2 2 2
66 2 55 44kmC C m C n   (5.14) 

In the above formulas, ijC  are elastic coefficients of orthotropic material [1]; xym  and 

zym  are the couple stress moments which are caused by rotation displacement; kb , 

1km  and 2km  are respectively the MLSPs in ,x -, ,y - and z -directions. In term of 

physical meaning, kb  represents the micro-scale material parameter of the fiber 

rotating in the ,y z  plane where the fiber cross-section and the matrix interact, and 

the fiber are viewed as the impurity affecting the rotational equilibrium. 1km  and 2km  

represent the micro-scale material parameter within the matrix rotating about the 
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impurity in the ,x z  and , ,x y  plane, respectively [6, 149]; cos km  , sin kn  , 

k is a fiber angle with respect to the x -axis.  

5.2.3. Variational formulation  

The strain energy, work done and kinetic energy are denoted by E , W  and K  

respectively. The strain energy E  of the beam is given by: 
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where the stiffness coefficients of the beam are determined as follows:  
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The work done W  by axially compressive load 0N  and transverse load q  is 

given by: 

 2
0 0, 0

0 0

1
( )

2

L L

W xN w bdx qw bdx       (5.20) 

The kinetic energy K  of the beam is written by: 
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where the dot-superscript denotes the differentiation with respect to the time t ;   is 

the mass density of each layer; 0I , 1I , 2I , 1J , 2J , 2K  are the inertia coefficients 

determined by:  

    
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The total potential energy of system is expressed by: 
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5.2.4. Ritz solution  

By using Ritz method, the displacement field in Eq. (5.23) is approximated by: 
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where   is the frequency, 2 1i    the imaginary unit; 0 ju , 0 jw  and 1 ju  are unknown 

and need to be determined; ( )j x  are approximation functions. In this Chapter, new 

exponential approximation functions for Ritz solution reported in Table 5.1 are 

proposed for three typical BCs including S-S, C-F and C-C. 

By substituting Eq. (5.24-5.26) into Eq. (5.23) and using Lagrange’s equations: 

 0
j j

d

p dt p

 
 

 
  (5.27) 
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with jp  representing the values of  1, ,0 j 0 j ju w u , the static, vibration and buckling 

behaviour of MGLCB can be obtained by solving the following equations: 
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Table 5.1. Approximation functions and essential BCs of beams  

BC   ( )j x  x=0 x=L 
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where the components of stiffness matrix K , mass matrix M and load vector F are 

given by:  
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5.3. Numerical results 

5.3.1. Convergence and accuracy studies  
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Convergence and verification studies are conducted to demonstrate the accuracy 

of the present study. Laminates, which are made of the same orthotropic materials, 

have equal thicknesses with material properties in Table 5.2. The beam is under a 

uniformly distributed load 0q q  or a sinusoidal load 0 sin
x

q q
L

 
  

 
. Unless 

otherwise stated, the following non-dimensional terms are used: 
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 
   for Material (MAT) I.5 and 

2

1

L

h E

 
    for MAT III.5  (5.31) 

The numerical results of marco composite beams can be achieved by setting 

1 2 0kb km km     . It should be noted that turning the composite laminated beam 

around the fiber direction is easier than turning around the normal to the fiber 

direction. The MLSP in the fiber direction is greater than that in other directions, i.e. 

 1 2,kb km km   . Therefore, only the MLSP in the fiber direction is considered in 

this study, i.e.  kb b   and 1 2 0km km   . The value of the MLSP is referred from 

[7, 8, 37, 146, 148, 150]. 

Table 5.2. Material properties of laminated composite beams considered in this study. 

Material properties MAT I.5 [48]  MAT II.5 [7] MAT III.5 [78] 

E2=E3 (GPa) 6.98 10-3 9.65 

E1 (GPa) 25E2 25E2 144.8 

G12=G13 (GPa) 0.5E2 0.5E2 4.14 

G23 (GPa) 0.2E2 0.2E2 3.45 

12 0.25 0.25 0.3 

13 0.25 0.25 0.3 

23 0.25 0.25 0.3 

h (m) 4 2x103 25 

b (m) 8 1x103 25 
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Composite beams (MAT I.5, 00/900/00, / 5L h  ) with various BCs are considered to 

evaluate the convergence. The non-dimensional fundamental frequencies, critical buckling 

loads and mid-span displacements with respect to the series number m  are given in Table 5.3. 

The results indicate that 6m   is the convergence point for natural frequency, critical buckling 

load and displacement, respectively. Thus, this number of series terms is used hereafter. It can 

be stated that the convergence of present solution appears to be faster than that of the solution 

from [152] ( 12m  ). This is advantage of proposed approximation function.  

Table 5.3. Convergence studies for ( 0 0 00 / 90 / 0 ) composite beams (MAT I.5, / 5L h  ). 

BC /b h    m   

  2 4 6 8 10 

Fundamental frequency    

S-S 0 7.1811 7.1796 7.1796 7.1796 7.1796 

 1 8.4006 8.3979 8.3979 8.3979 8.3979 

C-F 0 3.3711 3.3163 3.3111 3.3108 3.3108 

 1 3.8675 3.8433 3.8416 3.8415 3.8415 

C-C 0 9.0547 9.0359 9.0359 9.0359 9.0359 

 1 13.0536 13.0530 13.0530 13.0530 13.0530 

Critical buckling load 

S-S 0 5.2373 5.2354 5.2354 5.2354 5.2354 

 1 7.1639 7.1599 7.1599 7.1599 7.1599 

C-F 0 2.9459 2.8950 2.8945 2.8945 2.8945 

 1 3.3750 3.5088 3.5082 3.5082 3.5082 

C-C 0 7.0582 7.0564 7.0564 7.0564 7.0564 

 1 13.7654 13.7555 13.7555 13.7555 13.7555 

Mid-span displacement 

S-S 0 2.4216 2.4144 2.4141 2.4141 2.4141 

 1 1.7870 1.7827 1.7826 1.7826 1.7826 

C-F 0 6.1552 6.8006 6.8309 6.8301 6.8306 

 1 4.3796 4.6111 4.6061 4.6060 4.6061 

C-C 0 1.5127 1.5375 1.5378 1.5378 1.5378 

 1 0.7551 0.7556 0.7556 0.7556 0.7556 
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In order to verify the accuracy of the present solution, the simply supported beams 

are investigated. Since there is no published data for the micro composite beams with 

arbitrary lay-ups, the verifications are only focused on cross-ply beams. The critical 

buckling loads and fundamental frequencies of  0 0 090 / 0 / 90  and  0 0 00 / 90 / 0  

beams (MAT I.5) with b h   are shown in Figs. 5.3 and 5.4, and compared with those 

from analytical solution of Abadi and Daneshmehr [148], Mohammad-Abadi and 

Daneshmehr [8]. It can be seen that the present results are in good agreements with 

previous results for Timoshenko and Reddy beam models.  

 

a. 0 0 090 / 0 / 90                         b. 0 0 00 / 90 / 0  
Figure 5.3. Comparison of critical buckling loads of S-S beams (MAT I.5). 

 

a. 0 0 090 / 0 / 90                 b. 0 0 00 / 90 / 0  
Figure 5.4. Comparison of fundamental frequencies of S-S beams (MAT I.5). 
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Further verification is illustrated in Fig. 5.5 for  0 0 090 / 0 / 90  beams (MAT II.5) 

with b h   and L=4h, subjected to sinusoidal loads 0 sin
x

q q
L

 
  

 
. It should be 

noted that the non-dimensional forms of the displacement and axial stress are 

3 4
0 2 0100 /w w E bh q L  and 0, /

2
x x

L
z q 

 
  

 
, respectively. There is a slight 

discrepancy between the present results and those of Yang et al. [7]. 

 

a. Non-dimensional displacement  b. Non-dimensional normal stress 

Figure 5.5. Comparison of displacement and normal stress of  0 0 090 / 0 / 90  S-S 

beams (MAT II.5). 

5.3.2. Static analysis  

The static behaviours of the MGLCB with various BCs and length-to-height ratios 

are considered in this section. The non-dimensional mid-span displacements of beams 

(MAT II.5) subjected to a uniformly load  0q q  with 0, / 4, / 2,b h h h   are 

shown in Tables 5.4-5.6. It can be seen that the displacements of beams decrease as 

b  increases for all BCs and span-to-thickness ratios. In the case of 0,b   the results 

of marco beams are recovered and agree well with those of Vo et al. [19], which 

obtained from finite element model and higher-order beam theory. 
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Table 5.4. Displacement of S-S beams (MAT II.5). 

/L h  Lay-ups   Vo et al. [19] Present    

    0b   / 4b h   / 2b h   b h   

5 0 00 / / 0   00 1.7930 1.8021 1.7622 1.6523 1.3240 

  300  2.0140 2.0233 1.9799 1.8596 1.4959 

  600  2.3030 2.3122 2.2642 2.1303 1.7197 

  900  2.4049 2.4141 2.3627 2.2195 1.7826 

 00 /   00 1.7930 1.8021 1.7622 1.6523 1.3240 

  300  3.6634 3.6836 3.5127 3.0870 2.1039 

  600  4.6135 4.6511 4.4605 3.9759 2.7980 

  900  4.7346 4.7852 4.5895 4.0917 2.8814 

10 0 00 / / 0   00 0.9222 0.9236 0.9086 0.8664 0.7320 

  300  0.9946 0.9961 0.9814 0.9398 0.8047 

  600  1.0700 1.0715 1.0577 1.0186 0.8875 

  900  1.0965 1.0980 1.0838 1.0436 0.9089 

 00 /   00 0.9222 0.9236 0.9086 0.8664 0.7320 

  300  2.7402 2.7482 2.6290 2.3274 1.6024 

  600  3.5871 3.6094 3.4687 3.1064 2.1985 

  900  3.6626 3.6966 3.5529 3.1829 2.2545 

50 0 00 / / 0   00 0.6370 0.6370 0.6276 0.6008 0.5135 

  300  0.6608 0.6609 0.6523 0.6279 0.5462 

  600  0.6650 0.6650 0.6580 0.6380 0.5687 

  900  0.6651 0.6661 0.6592 0.6394 0.5706 

 00 /   00 0.6370 0.6370 0.6276 0.6008 0.5135 

  300  2.4406 2.4458 2.3415 2.0759 1.4283 

  600  3.2540 3.2727 3.1465 2.8204 1.9940 

  900  3.3147 3.3446 3.2161 2.8836 2.0403 
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Table 5.5. Displacement of C-F beams (MAT II.5). 

/L h  Lay-ups   Vo et al. [19] Present    

    0b   / 4b h   / 2b h   b h   

5 0 00 / / 0   00 5.2774 5.2572 5.0746 4.6404 3.5800 

  300  5.8804 5.8586 5.6504 5.1624 3.9877 

  600  6.6029 6.5800 6.3435 5.7916 4.4792 

  900  6.8541 6.8309 6.5778 5.9896 4.6061 

 00 /   00 5.2774 5.2572 5.0746 4.6404 3.5800 

  300  11.6830 11.7047 11.0919 9.6451 6.4689 

  600  14.8020 14.8997 14.2305 12.5869 8.7400 

  900  15.1540 15.3084 14.6211 12.9334 8.9841 

10 0 00 / / 0   00 2.9663 2.9653 2.9082 2.7550 2.2981 

  300  3.1828 3.1817 3.1236 2.9687 2.5060 

  600  3.3889 3.3882 3.3307 3.1786 2.7245 

  900  3.4605 3.4601 3.4001 3.2425 2.7753 

 00 /   00 2.9663 2.9653 2.9082 2.7550 2.2981 

  300  9.1499 9.1716 8.7662 7.7464 5.3131 

  600  12.0020 12.0801 11.6027 10.3782 7.3237 

  900  12.2440 12.3673 11.8797 10.6288 7.5061 

50 0 00 / / 0   00 2.1602 2.1598 2.1278 2.0372 1.7408 

  300  2.2405 2.2401 2.2110 2.1282 1.8512 

  600  2.2531 2.2526 2.2289 2.1610 1.9262 

  900  2.2565 2.2559 2.2325 2.1652 1.9322 

 00 /   00 2.1602 2.1598 2.1278 2.0372 1.7408 

  300  8.2916 8.3096 7.9551 7.0528 4.8524 

  600  11.0540 11.1202 10.6915 9.5833 6.7754 

  900  11.2580 11.3645 10.9277 9.7980 6.9325 
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Table 5.6. Displacement of C-C beams (MAT II.5). 

/L h  Lay-ups   Vo et al. 

[19] 

Present    

    0b   / 4b h   / 2b h   b h   

5 0 00 / / 0   00 1.0998 1.0908 1.0239 0.8756 0.5709 

  300  1.2670 1.2569 1.1767 1.0008 0.6442 

  600  1.4766 1.4658 1.3699 1.1587 0.7339 

  900  1.5487 1.5378 1.4341 1.2067 0.7556 

 00 /   00 1.0998 1.0908 1.0239 0.8756 0.5709 

  300  1.5755 1.5707 1.4497 1.1960 0.7345 

  600  1.8575 1.8582 1.7414 1.4806 0.9599 

  900  1.9193 1.9236 1.8025 1.5320 0.9927 

10 0 00 / / 0   00 0.3968 0.3957 0.3831 0.3527 0.2750 

  300  0.4469 0.4457 0.4315 0.3973 0.3104 

  600  0.5108 0.5096 0.4934 0.4547 0.3563 

  900  0.5332 0.5319 0.5147 0.4734 0.3690 

 00 /   00 0.3968 0.3957 0.3831 0.3527 0.2750 

  300  0.7783 0.7799 0.7392 0.6431 0.4326 

  600  0.9726 0.9782 0.9343 0.8266 0.5754 

  900  0.9983 1.0068 0.9617 0.8509 0.5927 

50 0 00 / / 0   00 0.1367 0.1367 0.1346 0.1287 0.1097 

  300  0.1431 0.1430 0.1411 0.1356 0.1176 

  600  0.1462 0.1461 0.1445 0.1399 0.1240 

  900  0.1472 0.1472 0.1456 0.1409 0.1251 

 00 /   00 0.1367 0.1367 0.1346 0.1287 0.1097 

  300  0.4974 0.4989 0.4776 0.4233 0.2913 

  600  0.6608 0.6654 0.6397 0.5733 0.4054 

  900  0.6733 0.6803 0.6541 0.5864 0.4150 
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In the next example, micro composite beams under sinusoidal loads, 

0 sin
x

q q
L

 
  

 
 (MAT II.5, / 4L h  ), are investigated. Their deflections with various 

MLSP are plotted in Figs. 5.6-5.8. It can be seen that they decrease with the increase 

of b . Fig. 5.9 shows mid-span displacements of  0 0 00 / 30 / 0  and  0 00 / 30  beams 

with different BCs. It is interesting to see that as /b h  increases, the variation of the 

beams’ displacement depends on BC. The C-F beam has the biggest variation.  

 

 a. 0 0 00 / 90 / 0           b. 0 00 / 90  

 

  c. 0 0 00 / 45 / 0           d. 0 00 / 45  

Figure 5.6. Effect of MLSP on displacements of S-S beams (MAT II.5, / 4L h  ). 
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 a. 0 0 00 / 90 / 0           b. 0 00 / 90  

 

c. 0 0 00 / 45 / 0           d. 0 00 / 45  

Figure 5.7. Effect of MLSP on displacements of C-F beams (MAT II.5, / 4L h  ). 

 

 a. 0 0 00 / 90 / 0           b. 0 00 / 90  
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  c. 0 0 00 / 45 / 0           d. 0 00 / 45  

Figure 5.8. Effect of MLSP on displacements of C-C beams (MAT II, / 4L h  ). 

 

    a. 0 0 00 / 30 / 0                             b. 0 00 / 30  
Figure 5.9. Effect of MLSP on displacements of beams with various BCs (MAT II.5, / 4L h  ) 

The axial and shear stresses of  0 0 00 / 60 / 0  and  0 00 / 60  simply supported 

beams are shown in Figs. 5.10 and 5.11. Similar to the displacement, the stress also 

reduces as the MLSP increases. 
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        a. xx                                              b. xz  

Figure 5.10. Effect of MLSP on through-thickness distribution of stresses of  
( 0 0 00 / 60 / 0 ) S-S beams ( MAT II.5, / 4L h  ). 

 

       a. xx                                              b. xz  

Figure 5.11. Effect of MLSP on through-thickness distribution of stresses of  

( 0 00 / 60 ) S-S beams (MAT II.5, / 4L h  ). 

5.3.3. Vibration and buckling analysis  

The non-dimensional fundamental frequencies and critical buckling loads of the 

MGLCB with various BCs and length-to-height are given in Tables 5.7-5.10. For 

macro composite beams ( 0),b   the present results again agree well with those of 

Vo et al. [157] and Chen et al. [84] (Tables 5.7 and 5.8). Some new results for micro 

composite beams are shown to serve as benchmarks for future studies. It can be seen 
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that the results are increased as b  increases. This response can be expected because 

an increase in the MLSP leads to an increase in the beams’ stiffness.  

Table 5.7. Fundamental frequencies of ( /  ) beams (MAT III.5). 

BC /L h    Chen et al. 

 [84] 

Vo et al. 

 [157] 

Present    

     0b   / 4b h   / 2b h   b h   

S-S 5 00 - - 1.8492 1.8766 1.9559 2.2383 

  300  - - 0.9185 0.9727 1.1181 1.5555 

  600  - - 0.6912 0.7121 0.7712 0.9700 

  900  - - 0.6886 0.6886 0.6886 0.6886 

 15 00 - - 2.6494 2.6785 2.7637 3.0789 

  300  - - 0.9986 1.0556 1.2105 1.6914 

  600  - - 0.7310 0.7527 0.8143 1.0239 

  900  - - 0.7295 0.7295 0.7295 0.7295 

C-F 5 00 - - 0.7956 0.8083 0.8427 0.9580 

  300  - - 0.3435 0.3636 0.4177 0.5829 

  600  - - 0.2545 0.2621 0.2837 0.3569 

  900  - - 0.2538 0.2538 0.2538 0.2538 

 15 00 - - 0.9803 0.9910 1.0224 1.1386 

  300  - - 0.3580 0.3784 0.4339 0.6067 

  600  - - 0.2615 0.2692 0.2913 0.3663 

  900  - - 0.2610 0.2610 0.2610 0.2610 

C-C 5 00 - 2.4448 2.4605 2.5572 2.8013 3.5424 

  300  - 1.6668 1.6642 1.7942 2.1076 2.9612 

  600  - 1.3546 1.3452 1.3944 1.5252 1.9389 

  900  - 1.3477 1.3342 1.3342 1.3342 1.3342 

 15 00 4.8575 4.9004 4.8968 4.9697 5.1701 5.8566 

  300  2.3016 2.1832 2.1802 2.3077 2.6502 3.6930 

  600  1.6686 1.6249 1.6201 1.6688 1.8065 2.2718 

  900  1.6237 1.6227 1.6153 1.6153 1.6153 1.6153 

 



96 
 

Table 5.8. Fundamental frequencies of ( 00 / ) beams (MAT III.5). 

BC /L h    Chen et al. 

 [84] 

Vo et al. 

  [157] 

Present    

     0b   / 4b h   / 2b h   b h   

S-S 5 00 - - 1.8492 1.8766 1.9559 2.2383 

  300  - - 1.3198 1.3612 1.4771 1.8575 

  600  - - 1.1754 1.2096 1.3061 1.6275 

  900  - - 1.1722 1.2011 1.2833 1.5631 

 15 00 - - 2.6494 2.6785 2.7637 3.0789 

  300  - - 1.5437 1.5886 1.7160 2.1489 

  600  - - 1.3329 1.3698 1.4749 1.8346 

  900  - - 1.3314 1.3626 1.4521 1.7639 

C-F 5 00 - - 0.7956 0.8083 0.8427 0.9580 

  300  - - 0.5140 0.5300 0.5745 0.7219 

  600  - - 0.4500 0.4631 0.4997 0.6226 

  900  - - 0.4492 0.4602 0.4914 0.5983 

 15 00 - - 0.9803 0.9910 1.0224 1.1386 

  300  - - 0.5571 0.5733 0.6192 0.7758 

  600  - - 0.4797 0.4929 0.5307 0.6604 

  900  - - 0.4792 0.4904 0.5226 0.6349 

C-C 5 00 - 2.4448 2.4605 2.5572 2.8013 3.5424 

  300  - 2.1200 2.1245 2.2319 2.5015 3.2864 

  600  - 1.9999 1.9968 2.0804 2.2975 2.9511 

  900  - 1.9935 1.9860 2.0570 2.2441 2.8211 

 15 00 4.8575 4.9004 4.8968 4.9697 5.1701 5.8566 

  300  3.3548 3.2489 3.2406 3.3408 3.6201 4.5414 

  600  2.9491 2.8669 2.8500 2.9320 3.1629 3.9364 

  900  2.8012 2.8709 2.8443 2.9136 3.1103 3.7828 
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Table 5.9. Buckling loads of ( /  ) beams (MAT III.5). 

BC /L h    Present    

   0b   / 4b h   / 2b h   b h   

S-S 5 00 5.2343 5.3899 5.8533 7.6577 

  300  1.3140 1.4730 1.9443 3.7485 

  600  0.7464 0.7921 0.9287 1.4671 

  900  0.7408 0.7408 0.7408 0.7408 

 15 00 10.7087 10.9449 11.6521 14.4607 

  300  1.5224 1.7013 2.2370 4.3671 

  600  0.8160 0.8651 1.0124 1.6007 

  900  0.8125 0.8125 0.8125 0.8125 

C-F 5 00 2.2972 2.3501 2.5082 3.1323 

  300  0.3714 0.4152 0.5462 1.0633 

  600  0.2011 0.2132 0.2496 0.3945 

  900  0.2001 0.2001 0.2001 0.2001 

 15 00 2.9724 3.0375 3.2298 3.9974 

  300  0.3864 0.4316 0.5675 1.1099 

  600  0.2058 0.2182 0.2553 0.4037 

  900  0.2050 0.2050 0.2050 0.2050 

C-C 5 00 7.9859 8.4589 9.8645 15.3013 

  300  3.6046 4.1007 5.5445 10.7495 

  600  2.3211 2.4736 2.9260 4.6610 

  900  2.2856 2.2856 2.2856 2.2856 

 15 00 30.6893 31.4445 33.6981 42.5424 

  300  5.7473 6.4294 8.4636 16.4222 

  600  3.1536 3.3446 3.9166 6.1887 

  900  3.1360 3.1360 3.1360 3.1360 
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Table 5.10. Buckling loads of ( 00 / ) beams (MAT III.5). 

BC /L h    Present    

   0b   / 4b h   / 2b h   b h   

S-S 5 00 5.2343 5.3899 5.8533 7.6577 

  300  2.7128 2.8843 3.3929 5.3424 

  600  2.1645 2.2915 2.6688 4.1269 

  900  2.1523 2.2589 2.5763 3.8086 

 15 00 10.7087 10.9449 11.6521 14.4607 

  300  3.6429 3.8579 4.5015 7.0582 

  600  2.7174 2.8700 3.3273 5.1471 

  900  2.7115 2.8400 3.2250 4.7581 

C-F 5 00 2.2972 2.3501 2.5082 3.1323 

  300  0.8641 0.9156 1.0693 1.6752 

  600  0.6531 0.6900 0.8004 1.2367 

  900  0.6513 0.6823 0.7752 1.1431 

 15 00 2.9734 3.0375 3.2298 3.9974 

  300  0.9412 0.9965 1.1623 1.8241 

  600  0.6961 0.7351 0.8521 1.3192 

  900  0.6949 0.7278 0.8263 1.2196 

C-C 5 00 7.9859 8.4589 9.8645 15.3013 

  300  5.9147 6.4082 7.8569 13.2243 

  600  5.1933 5.5641 6.6547 10.7226 

  900  5.1373 5.4483 6.3659 9.8223 

 15 00 30.6893 31.4445 33.6981 42.5424 

  300  12.9047 13.6837 16.0053 25.0737 

  600  9.9157 10.4806 12.1667 18.7882 

  900  9.8793 10.3542 11.7730 17.3589 
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Figs. 5.12 and 5.13 show variation of the natural frequencies and critical buckling 

loads with respect to /b h  ratio of  0 0 00 / 30 / 0  and  0 00 / 30  beams. It is clear that 

as /b h  increases, their variation depend on BC. The C-C beam has the biggest 

variation.  

 

a. 0 0 00 / 30 / 0                               b. 0 00 / 30  

Figure 5.12. Effect of MLSP on frequencies of beams with various BC (MAT III.5, 
/ 5L h  ) 

 

a. 0 0 00 / 30 / 0                               b. 0 00 / 30  
Figure 5.13. Effect of MLSP on buckling loads of beams with various BCs (MAT 

III.5, / 5L h  ) 
5.4. Conclusions 

The size effect, which is included by the modified couple stress theory, on 

bending, vibration and buckling behaviours of micro composite beams with arbitrary 
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lay-ups is investigated in this Chapter. This is the first times Poisson’s effect is 

incorporated in constitutive equations for analysing the micro composite beams with 

arbitrary lay-ups. The governing equations of motion are derived from Lagrange’s 

equations. New approximation functions are developed to solve problems. The 

frequencies, critical buckling loads, displacements and stresses of micro composite 

beams with various BCs are obtained. The obtained results indicate that: 

- The size effect is significant for bending, buckling and free vibration analysis 

of micro laminated composite beams. 

- Beam model and constitutive behaviours used in this Chapter are suitable for 

analysis of micro laminated composite beams with arbitrary lay-ups. 

- The proposed functions are simple and efficient for predicting behaviours of 

micro laminated composite beams. 
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 Chapter 6.  ANALYSIS OF THIN-WALLED LAMINATED COMPOSITE 

BEAMS BASED ON FIRST-ORDER BEAM THEORY 7 

6.1. Introduction 

Composite and functionally graded materials are commonly used in many fields 

of mechanical, aeronautical and civil engineering. The most well-known advantages 

of these materials are high stiffness-to-weight and strength-to-weight ratios, low 

thermal expansion, enhanced fatigue life and good corrosive resistance. In addition 

to their extensive use in practice, the available literatures indicate that a large number 

of studies have been conducted to analyse behaviours of these materials [103, 158, 

159] in which thin-walled composite and functionally graded (FG) sandwich 

structures have been considered ([160-167]). Thin-walled beam theories have been 

presented by Vlasov [168] and Gjelsvik [169]. Bauld and Lih-Shyng [15] then 

extended Vlasov’s thin-walled beam theory of isotropic material to the composite 

one. Pandey et al. [170] used Galerkin’s method to solve the equilibrium differential 

equation for analysing of the flexural-torsional buckling of thin-walled composite I-

beams. Buckling and free vibration of these beams were presented by Lee and Kim 

[17, 18] based on the finite element method (FEM) and classical beam theory. The 

FEM was used by Rajasekaran and Nalinaa [171] to investigate static, buckling and 

vibration behaviours of thin-walled composite beams with generic section. Maddur 

and Chaturvedi [172, 173] presented a Vlasov-type modified FOBT and analysed the 

dynamic responses of thin-walled composite open sections beams. Qin and Librescu 

[174] used an extended Galerkin’s method to investigate natural frequencies and 

static responses of anisotropic thin-walled beams which account for shear 

deformation effects. A beam element based on the FOBT was developed by Lee [175] 

for the bending analysis of laminated composite I-beams under uniformly distributed 

loads. Machado and Cortinez [176] presented a stability analysis of thin-walled 

composite beams with open and closed sections considering shear deformation 

effects. Vo and Lee [177] extended previous research [175] to study vibration and 

                                                      
7 A slightly different version of this chapter has been published in Composite Part B in 2019  
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buckling of thin-walled open section composite beams. Dynamic stiffness matrix 

method were also used in the studies [178-181] to analyse vibration and buckling of 

the thin-walled composite beams. Silvestre and Camotim [182] used shear 

deformable generalised beam theory for buckling behaviours of lipped channel 

columns. Prokic et al. [183] proposed an analytical solution for free vibration of 

simply-supported thin-walled composite beams by using Vlasov’s beam theory and 

classical lamination theory. Based on the Carrera Unified Formulation (CUF), 

Carrera et al. [184-188] analysed static, vibration and elastoplastic thin-walled 

composite structures. By using FEM, Sheikh et al. [189] conducted the study of free 

vibration of thin-walled composite beams having open and closed sections to 

investigate the shear effects. Li et al. [190] investigated hygrothermal effects on free 

vibration of simply-supported thin-walled composite beams by using Galerkin’s 

method. Recently, the thin-walled FG beams have caught interests of many 

researchers. Nguyen et al. [191, 192] analysed vibration and lateral buckling of the 

thin-walled FG beams by FEM. Lanc et al. [193] analysed nonlinear buckling 

responses of thin-walled FG open section beams based on Euler-Bernoulli-Vlasov 

theory. Kim and Lee [194, 195] investigated the shear effects on free vibration and 

buckling behaviours of the thin-walled FG beam by three different types of finite 

beam elements, namely, linear, quadratic and cubic elements. The studies on the 

effects of shear deformation on buckling and vibration behaviours of thin-walled FG 

beams are still limited. On the other hand, Ritz method is simple and efficient to 

analyse the behaviours of composite beams with various boundary conditions [44, 

47, 48, 130, 196, 197], however, it has not been used for thin-walled composite and 

FG sandwich beams.  

The main novelty of this Chapter is to develop a Ritz solution for the vibration, 

buckling and bending analyses of thin-walled composite and FG beams by using the 

FOBT. The governing equations of motion are derived by using Lagrange’s 

equations. Results of the present element are compared with those in available 

literature to show its accuracy of the present solution. Parametric study is also 
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performed to investigate the effects of shear deformation, length-to-height ratio, fibre 

angle, material anisotropy and material distribution on natural frequencies, critical 

buckling loads and deflection of the thin-walled composite and FG sandwich beams.  

6.2. Theoretical formulation 

6.2.1. Kinematics 

In this section, a kinematic field of the thin-walled composite and FG beams is 

presented. The theoretical development requires three sets of coordinate systems as 

shown in Fig. 6.1. The first coordinate system is the orthogonal Cartesian coordinate 

system ( , ,x y z ), for which the y- and z-axes lie in the plane of the cross-section and 

the x axis parallel to the longitudinal axis of the beam. The second coordinate system 

is the local plate coordinate ( , ,n s x ), wherein the n axis is normal to the middle surface 

of a plate element, the s axis is tangent to the middle surface and is directed along the 

contour line of the cross-section. s  is an angle of orientation between ( , ,n s x ) and (

, ,x y z ) coordinate systems. The pole P , which has coordinate ( ,P Py z ), is called the 

shear center [198].  

The following assumptions are made: 

a. Strains are small and contour of section does not deform in its own plane.  

b. Shear strains 0 0,yx zx   and warping shear 0
  are uniform over the section.   

c. Local buckling and pre-buckling deformation are not considered. 

d. Poisson’s coefficient is constant. 
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
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Figure 6.1. Thin-walled coordinate systems 
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Relation of the mid-surface displacements ( , ,u v w ) at a point in the contour 

coordinate system and global beam displacements ( , ,U V W ) is given by ([175]): 

              , , , sin , cos ,s sv s x t V x t s W x t s x t q s      (6.1) 

              , , , cos , sin ,s sw s x t V x t s W x t s x t r s      (6.2) 

                , , , , , ,z yu s x t U x t x t y s x t z s x t s        (6.3) 

where ,U V and W  are displacement of P  in the x , y  and z  direction, 

respectively;  is the rotation angle about pole axis; ,y z   and   denote rotations 

of the cross-section with respect to ,y z  and  : 

 0
,z yx xV     (6.4) 

 0
,y zx xW    (6.5) 

 0
,x      (6.6) 

where   is warping function given by: 

    
0

s

s

s r s ds    (6.7) 

The displacements ( , ,u v w ) at any generic point on section are expressed by the 

mid-surface displacements ( , ,u v w ) as:  

    , , , , ,v n s x t v s x t  (6.8) 

      , , , , , , ,sw n s x t w s x t n s x t   (6.9) 

      , , , , , , ,xu n s x t u s x t n s x t   (6.10) 

where s and x  are determined by ([177]):  

 sin cosx z s y s q         (6.11) 

  , ,s

v
s x t

s



 


 (6.12) 

The strain fields are defined as: 

      , , , , , , ,s s sn s x t s x t n s x t     (6.13) 

      , , , , , , ,x x xn s x t s x t n s x t     (6.14) 



105 
 

      , , , , , , ,sx sx sxn s x t s x t n s x t     (6.15) 

      , , , , , , ,nx nx nxn s x t s x t n s x t     (6.16) 

where  

 0s    (6.17) 

 0
x x z y

u
y z

x
    


    


 (6.18) 

 0s   (6.19) 

  sin cosx
x z s y s q

x



     


   


 (6.20) 

 sx sx   (6.21) 

  0nx   (6.22) 

 0
,x xU   (6.23) 

 ,y y x   (6.24) 

 ,z z x   (6.25) 

 ,x    (6.26) 

 ,sx x      (6.27) 

      0 sin cosx x s z s yy n z n nq                (6.28) 

 0 0 0cos sinsx yx s zx s sxr n           (6.29) 

 0 0 0sin cosnx yx s zx s q         (6.30) 

6.2.2. Constitutive relations  

6.2.2.1. Thin-walled composite beam 

The composite beam is constituted by a finite number of orthotropic layers. The 

constitutive relations at the thk  layer in ( , ,n s x ) coordinate systems can be expressed 

as: 

 

( ) ( )* *
11 16

* *
16 66

*
55

0

0

0 0

k k

x x

sx sx

nx nx

Q Q

Q Q

Q

 

 

 

    
    

    
    

    

 (6.31) 
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where  
2

* 12
11 11

22

Q
Q Q

Q
    (6.32) 

  * 12 26
16 16

22

Q Q
Q Q

Q
    (6.33) 

  
2

* 26
66 66

22

Q
Q Q

Q
    (6.34) 

 *
55 55Q Q   (6.35) 

where ijQ  are the transformed reduced stiffnesses, see Appendix A for more details.  

6.2.2.2. Thin-walled functionally graded (FG) sandwich beam 

The constitutive relations of the FG sandwich beams can be written as follows: 

 

*
11

*
66

*
55

0 0

0 0

0 0

x x

sx sx

nx nx

Q

Q

Q

 

 

 

    
    

    
    

    

 (6.36) 

where   *
11Q E n   (6.37) 

 
 

 
* *
66 55

2 1

E n
Q Q


 


  (6.38) 

 E n  is Young’s modulus;   is Poisson’s coefficient. The effective mass density   

and Young’s modulus E  of the thin-walled FG sandwich beam are approximated by: 

  1c c m cV V       (6.39) 

  1c c m cE E V E V     (6.40) 

where the subscripts c  and m  are used to indicate the ceramic and metal constituents, 

respectively; cV  is the volume fraction of ceramic material. Two type of material 

distributions are considered in this Chapter: 

Type A (for the flange, see Fig. 6.2a):  

 
 

0.5

1

p

c

n h
V

h

 
  

 
,  0.5 0.5h n h      (6.41) 

 1cV  ,  0.5 0.5h n h     (6.42) 
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where h  1 2,h h , p ,    1 2,   are the thickness of the flange, material parameter 

and thickness ratio of ceramic material of the flange, respectively.  

Type B (for the web, see Fig. 6.2b):  

 
 

0.5

0.5 1

p

c

n h
V

h

  
  

 
, 0.5 0.5h n h     or 0.5 0.5h n h     (6.43) 

 1cV  , 0.5 0.5h n h      (6.44) 

where 3h h  is the thickness of the web;   is thickness ratio of the ceramic material 

of the web. 
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             a. Composite I-beams                    b. FG sandwich I-beams 

Figure 6.2. Geometry of thin-walled I-beams 

6.2.3. Variational formulation  

The strain energy E  of the thin-walled beams is defined by: 

  1

2
s

E x x sx sx nx nxk d     


       (6.45) 

where sk and   are shear correction factor and volume of beam, respectively. It is 

well-known that the models based on the FOBT require a correct value of the shear 

correction factors. Several authors made contributions in order to improve the models 

used for the FOBT. Nguyen et al. [199] proposed shear correction factors for analysis 
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of functionally graded beams and plates. Hutchinson [200], Gruttmann and Wagner 

[201], and Barbero et al. [202] presented formulas in order to compute the shear 

factors of different cross-sections of a Timoshenko’s beam. In this Chapter, the shear 

factor is assumed to be a unity, which was suggested by some previous authors ([174, 

175, 177]). Substituting Eqs. (6.28), (6.29), (6.30), (6.31) and (6.36) into Eq. (6.45) 

leads to: 

   

     

2

11 , 16 , , 17 , , 15 18 , ,

0

12 , , 16 , 13 , , 17 , 14 , ,

2

18 15 , 66 , 67 , , 56 68 , , 26 , ,

66 , 36 , , 67 ,

1
2 2 2

2

2 2 2 2 2

2 2 2 2

2 2 2

L

E x x x x x x x

x z x x z x y x x y x x

x x x x x x x z x

x z x y x x

E U E U V E U W E E U

E U E U E U E U E U

E E U E V E V W E E V E V

E V E V E V







    

  

 

     


    

      

  



   
 

        

   

2

46 , , 68 56 , 77 ,

57 78 , , 27 , , 67 , 37 , , 77 , 47 , ,

2

78 57 , 55 58 88 , 25 28 , , 56 68 ,

35 38 , , 57 78 ,

2 2

2 2 2 2 2 2

2 2 2 2

2 2 2

y x x x x

x x x z x x z x y x x y x x

x x x z x x z

x y x x y

E V E E V E W

E E W E W E W E W E W E W

E E W E E E E E E E

E E E E

 





  

     

     

   

   

      

        

        

 

     
 

45 48 , , 88 55 ,

2 2
22 , 26 , 66 23 , , 27 , 36 , 67

2

24 , , 28 25 , 46 , 68 56 33 ,

2
37 , 77 34 , , 38 35

2

2 2 2 2 2

2 2 2 2

2 2 2

x x x

z x z x z z z x y x z x y z y x z y

z x x z x z x z y x

y x y y y x x

E E E E

E E E E E E E

E E E E E E E

E E E E E

 

   



   

           

        

    

  

      

      

    

       

, 47 ,

2 2
78 57 44 , 48 45 , 88 58 55

2

2 2 2

y x y x

y x x

E

E E E E E E E E dx

 

    

   

     



       
  (6.46) 

where the stiffness coefficients ijE  are given in Appendix B [177], L  is length of 

beam. 

The potential energy W  of thin-walled beam subjected to axial compressive load 

0N  and transverse load q  can be expressed as:  

 

    

     

2 2
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, ,
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0 , , , , , , ,

0 0
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2

1
2 2

2

W x x

L L

P
x x p x x p x x x

N
v w d qwd

A

I
N V W z V y W dx qWdx

A
  




     

 
       

 

 

 
 (6.47) 

where A  is the cross-sectional area, PI  is polar moment of inertia of the cross-section 

about the centroid defined by: 

 P y zI I I   (6.48) 
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where yI  and zI  are second moment of inertia with respect to y   and z  axis, 

defined by:  

 2
y

A

I z dA   (6.49) 

 2
z

A

I y dA   (6.50) 

The kinetic energy K  of the thin-walled beam is given by: 

   
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  

 (6.51) 

where dot-superscript denotes the differentiation with respect to the time t ,  n  is 

the mass density and the inertia coefficients are given in Appendix B [177]. 

The total potential energy of thin-walled beam is expressed by: 

 E W K       (6.52) 

6.2.4. Ritz solution  

By using the Ritz method, the displacement field is approximated by: 

 '

1

( , ) ( )
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i t
j j

j

U x t x U e 
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   (6.53) 
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V x t x V e 


   (6.54) 

 
1

( , ) ( )
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j j

j

W x t x W e 
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  (6.55) 

 
1
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( , ) ( )
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z j zj

j

x t x e   


   (6.57) 
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 '

1

( , ) ( )
m

i t
y j yj

j

x t x e   


    (6.58) 

 '

1

( , ) ( )
m

i t
j j

j

x t x e 
   



   (6.59) 

where   is the frequency, 2 1i    the imaginary unit; jU , jV , jW , j , zj , yj  and 

j  are unknown and need to be determined;  j z  are approximation functions. It 

is clear that these approximation functions in Table 6.1 satisfy the various BCs such 

as S-S, C-F and C-C. 

Table 6.1. Approximation functions and essential BCs of thin-walled beams.  

BC   
( )j

jx

L

x

e




 x=0 x=L 

S-S 1
x x

L L

 
 

 
 

 

0V W     

 

 

0V W     

C-F 
2

x

L

 
 
 

 

0V W     

, , , 0x x xV W     

0z yU        

 

C-C 
2 2

1
x x

L L

   
   

   
 

0V W     

, , , 0x x xV W     

0z yU        

0V W     

, , , 0x x xV W     

0z yU        

 

By substituting Eqs. (6.53-6.59) into Eq. (6.52) and using Lagrange’s equations: 

 0
j j

d

p dt p

 
 

 
  (6.60) 

with jp  representing the values of  , , , , , ,j j j j zj yj jU V W     , the vibration, buckling 

and bending behaviours of the thin-walled beam can be obtained by solving the 

following equations: 
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 (6.61) 

where the stiffness matrix K, mass matrix M and load vector F are expressed by:  
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If the shear effect is ignored, Eq. (6.1-6.3) degenerate to ,z xV   , ,y xW   , 

,x    By setting 0 0 0 0yx zx       into the above equations, the number of 

unknown variables reduces to four  , , ,U V W   as the Euler-Bernoulli-Vlasov beam 

model. Finally, the natural frequencies, critical buckling loads and deflections of the 

thin-walled beams without shear effects can be found: 
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  (6.63) 

where the stiffness matrix K, mass matrix M and load vector F are given by:  
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6.3. Numerical results 

Results for natural frequencies, critical buckling loads and deflection of thin-

walled composite and FG sandwich beams with various configurations including 

boundary conditions, lay-ups and thickness ratio of the ceramic material are presented 

in this section. Convergence and comparison with the available literature are made to 

show the accuracy of the present solution. In addition, some new results, which may 

be used as reference data for future, are presented. The material properties and 

geometry of thin-walled beams are given in Table 6.2 and Fig.6.2. The effect of the 

fiber angle, shear deformation, material parameter, length-to-height ratio and 

thickness ratio of ceramic material on vibration, buckling and bending behaviours of 

the thin-walled beams are investigated. The shear effect is defined by 

  / 100%NS s NSR R R   where SR  and NSR  denote the results with and without the 

shear effects, respectively.  

Unless otherwise stated, the following non-dimensional terms are used: 

 For composite beams: 
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 For FG sandwich beams: 
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Table 6.2. Material properties of thin-walled beams. 

Material 

properties 

MAT I.6 MAT II.6 MAT III.6  MAT IV.6 MAT V.6 

E1 , Ec (GPa) 53.78 25 380 320.7 141.9 

E2=E3 , Em  (GPa) 17.93 1 70 101.69 9.78 

G12=G13 (GPa) 8.96 0.6 - - 6.13 

G23 (GPa) 3.45 0.6 - - 4.8 

, 12=13 0.25 0.25 0.30 0.3 0.42 

 (kg/m3) 1968.90 - - - 1445 

c (kg/m3) - - 3960 - - 

m (kg/m3) - - 2702 - - 

6.3.1. Convergence study  

For purpose of testing convergence of present solution, the composite I-beams 

(MAT I.6, 1 2 3 5 cmb b b   , 1 2 3 0.208 cmh h h    and 340L b ),  FG sandwich I-

beams (MAT III.6, 1 2 15 cmb b  , 3 20 cmb  , 1 2 3 0.5 cmh h h   , 1 2 0.1    

, 5p   and 310L b ) with the various BCs are considered. It is noted that both flanges 

and web of composite I-beams are assumed to be symmetrically laminated angle-ply 

 
4

45 / 45
s

 with respect to its mid-plane.  The fundamental frequencies, critical 

buckling loads and deflections of thin-walled I-beams are presented in Table 6.3 and 

6.4 with various series number m . As can be seen, a rapid convergence is obtained 

and 10m   is sufficient to guarantee the numerical convergence 
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Table 6.3. Convergence studies for thin-walled composite I-beams.  

BC  m 

  2 4 6 8 10 12 

a. Fundamental frequency (Hz) 

S-S Shear 16.763 16.544 16.482 16.481 16.481 16.481 

 No shear 16.773 16.553 16.491 16.490 16.490 16.490 

C-F Shear 5.958 5.878 5.873 5.873 5.873 5.873 

 No shear 5.959 5.880 5.875 5.875 5.875 5.875 

C-C Shear 37.433 37.307 37.304 37.303 37.302 37.301 

 No shear 37.502 37.382 37.382 37.382 37.382 37.382 

b. Critical buckling load (kN) 

S-S Shear 2.752 2.690 2.671 2.671 2.671 2.671 

 No shear 2.755 2.692 2.673 2.673 2.673 2.673 

C-F Shear 0.706 0.668 0.668 0.668 0.668 0.668 

 No shear 0.706 0.668 0.668 0.668 0.668 0.668 

C-C Shear 10.797 10.678 10.657 10.657 10.657 10.657 

 No shear 10.832 10.712 10.691 10.691 10.691 10.691 

c. Deflection at mid-span under uniformly distributed load of 1kN (cm) 

S-S Shear 5.320 5.483 5.518 5.516 5.516 5.516 

 No shear 5.301 5.464 5.499 5.497 5.497 5.497 

C-F Shear 18.137 18.697 18.748 18.745 18.746 18.746 

 No shear 18.089 18.645 18.692 18.690 18.690 18.690 

C-C Shear 1.109 1.116 1.117 1.118 1.118 1.118 

 No shear 1.104 1.100 1.100 1.100 1.100 1.100 
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Table 6.4. Convergence studies for thin-walled FG sandwich I-beams.  

BC  m 

  2 4 6 8 10 12 

a. Fundamental frequency (Hz) 

S-S Shear 92.715 91.522 91.184 91.180 91.180 91.180 

 No shear 93.701 92.474 92.127 92.122 92.122 92.122 

C-F Shear 33.137 32.690 32.663 32.660 32.660 32.660 

 No shear 33.291 32.846 32.820 32.818 32.818 32.818 

C-C Shear 201.801 200.434 200.127 199.973 199.885 199.830 

 No shear 209.499 208.830 208.828 208.828 208.828 208.828 

b. Critical buckling load (MN) 

S-S Shear 1.036 1.013 1.006  1.006  1.006 1.006 

 No shear 1.055 1.031 1.024 1.024 1.024 1.024 

C-F Shear 0.269 0.255 0.255 0.255 0.255 0.255 

 No shear 0.271 0.256 0.256 0.256 0.256 0.256 

C-C Shear 3.867 3.827 3.820 3.820 3.820 3.820 

 No shear 4.150 4.104 4.096 4.096 4.096 4.096 

c. Deflection at mid-span uniformly distributed load of 1kN (mm) 

S-S Shear 0.080 0.082 0.083 0.083 0.083 0.083 

 No shear 0.074 0.077 0.077 0.077 0.077 0.077 

C-F Shear 0.269 0.278 0.279 0.279 0.279 0.279 

 No shear 0.254 0.261 0.262 0.262 0.262 0.262 

C-C Shear 0.020 0.021 0.021 0.021 0.021 0.021 

 No shear 0.015 0.015 0.015 0.015 0.015 0.015 

6.3.2. Composite I-beams 

6.3.2.1. Verification 

The first example demonstrates accuracy and validity of present solutions. The 

symmetric angle-ply I-beams (MAT I.6) with the various BCs are considered. The 

flanges and web are 0.208 cm thickness, and made of symmetric laminates that 

consist of 16 layers (  
4

/
S

  ). The first natural frequencies of S-S I-beams   

( 1 2 3 5 cmb b b    and 340L b ), C-F I-beams ( 1 2 4 cmb b  , 5 5 cmb   and 320L b ) 
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and C-C I-beams ( 1 2 3 5 cmb b b    and 340L b ) are showed in Table 6.5 and Fig. 

6.3. It can be seen that the present results are coincided with existing ones.  

Table 6.5. The fundamental frequency (Hz) of thin-walled S-S and C-F I-beams  

BC Reference Lay-up 

   
16

0  

4

30 /

30
s

 
  

 
4

60 /

60
s

 
  

 
4

90 /

90
s

 
  

 

S-S Present (Shear) 24.169 19.806 14.660 13.964 

 Present (No shear) 24.198 19.820 14.668 13.972 

 Vo and Lee [177] (Shear) 24.150 19.776 14.627 13.937 

 Sheikh et al. [189] (Shear) 24.160 19.800 14.660 13.960 

 Kim et al. [179] (No shear) 24.194 19.816 14.666 13.970 

C-F Present (Shear) 26.479 21.699 16.063 15.299 

 Present (No shear) 26.514 21.717 16.072 15.309 

 Kim and Lee [165] (Shear) 26.460 21.700 16.060 15.300 

 Kim and Lee [165] (No shear) 26.510 21.710 16.070 15.310 

 

Figure 6.3. Variation of the fundamental frequencies (Hz) of thin-walled C-C I-beams 

with respect to fiber angle.  
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The critical buckling loads of S-S I-beams ( 1 2 3 5 cmb b b    and 380L b ), C-F I-

beams ( 1 2 3 5 cmb b b    and 320L b ) and C-C I-beams ( 1 2 3 5 cmb b b   , 380L b ) 

are displayed in Table 6.6 and Fig. 6.4, respectively. Good agreements between the present 

results and those of Vo and Lee [177], Kim et al. [180, 181] are found again. It is also stated 

that there are not much differences between shear and no shear results because these beams 

are slender. 

Table 6.6. Critical buckling load (N) of thin-walled S-S and C-F I-beams  

BC Reference Lay-up    

   
16

0  

4

30 /

30
s

 
  

 
4

60 /

60
s

 
  

 
4

0 /

90
s

 
 
 

 

S-S Present (Shear) 1438.1 965.0 528.6 959.0 

 Present (No shear) 1438.8 965.2 528.7 959.3 

 Kim et al. [180] (No shear) 1438.8 965.2 528.7 964.4 

C-F Present (Shear) 5743.3 3856.8 2113.2 3831.4 

 Present (No shear) 5755.2 3861.0 2114.7 3837.3 

 Vo and Lee [177] (Shear) 5741.5 3854.5 2111.3 3829.8 

 Kim et al. [180] (No shear) 5755.2 3861.0 2114.7 3857.8 

 

Figure 6.4. Variation of the critical buckling loads (N) of thin-walled C-C I-beams 

with respect to fiber angle. 
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The deflection at mid-span of I-beams ( 1 2 3 5 cmb b b    and 350L b ) with various 

different BCs under uniformly distributed load of 1 kN/m are displayed in Table 6.7. 

Good agreements between the present solution and other results are also found. 

Table 6.7. Deflections (cm) at mid-span of thin-walled I-beams  

BC Reference Lay-up    

   
16

0  

4

30 /

30
s

 
  

 
4

60 /

60
s

 
  

 
4

0 /

90
s

 
 
 

 

S-S Present (Shear) 6.261 9.317 16.998 9.384 

 Present (No shear) 6.233 9.290 16.962 9.349 

 Lee and Lee [203] (No shear) 6.233 9.290 16.962 9.299 

 Lee [175] (Shear) 6.259 9.314 16.992 9.381 

C-F Present (Shear) 21.274 31.666 57.777 31.889 

 Present (No shear) 21.191 31.587 57.670 31.785 

C-C Present (Shear) 1.274 1.884 3.427 1.904 

 Present (No shear) 1.247 1.858 3.392 1.870 

 

6.3.2.2. Shear deformation effect 

This example is to investigate the effects of shear deformation on the vibration 

and buckling behaviors of I-beams. The composite I-beams (MAT II.6, 

1 2 20 cmb b  , 3 30 cmb  , 1 2 3 1 cmh h h    and 320L b ) are considered. The top 

and bottom flanges are angle-ply lay-up  /   and the web is unidirectional one. 

The results of I-beams with different BCs are displayed in Tables 6.8-6.10. From 

these tables, it can be seen that the present results comply with those of Vo and Lee 

[177], and both natural frequencies and critical buckling loads decrease as the fiber 

angle increases for all BCs.  
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Table 6.8. Non-dimensional natural frequency of thin-walled S-S I-beams  

BC Reference Lay-up 

   0  30 /

30

 
  

 
60 /

60

 
  

 
90 /

90

 
  

 

Present (Shear)  1  7.107 3.755 1.627 1.468 

  2  8.189 5.137 2.967 2.645 

  3  19.140 12.904 6.495 5.860 

  4  27.542 14.957 8.577 7.685 

  5  30.741 17.791 9.976 9.817 

Present (No shear)  1  7.186 3.761 1.628 1.469 

  2  8.303 5.145 2.970 2.648 

  3  20.856 13.404 6.513 5.876 

  4  28.743 15.043 8.606 7.713 

  5  32.408 17.917 10.213 10.045 

 

Table 6.9. Non-dimensional natural frequency of thin-walled C-F I-beams  

Reference Frequency Lay-up 

   0  30 /

30

 
  

 
60 /

60

 
  

 
90 /

90

 
  

 

Present (Shear)  1  2.547 1.339 0.580 0.523 

 2  3.174 2.423 1.572 1.400 

  3  7.123 4.746 3.597 3.272 

  4  15.492 8.357 3.627 3.540 

  5  17.559 10.755 5.780 5.162 

Present (No shear)  1  2.560 1.340 0.580 0.523 

 2  3.197 2.426 1.574 1.401 

 3  7.430 4.835 3.635 3.280 

  4  16.043 8.396 3.637 3.578 

  5  18.333 10.811 5.796 5.177 
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Table 6.10. Non-dimensional natural frequency of thin-walled C-C I-beams 

Reference Frequency Lay-up 

   0  30 /

30

 
  

 
60 /

60

 
  

 
90 /

90

 
  

 

Present (Shear)  1  15.480 8.474 3.682 3.322 

 2  17.239 10.104 4.839 4.332 

 3  34.221 23.221 10.121 9.131 

  4  40.918 25.221 12.265 11.004 

  5  44.983 27.483 19.739 17.804 

Present (No shear)  1  16.289 8.525 3.691 3.330 

 2  18.362 10.172 4.854 4.346 

 3  44.902 23.499 10.175 9.180 

  4  47.279 26.604 12.342 11.079 

  5  50.406 31.022 19.946 17.996 

Vo and Lee [177] (Shear)  1  15.460 8.471 3.678 3.319 

 2  17.211 10.092 4.836 4.330 

 3  33.996 23.209 10.147 9.152 

  4  40.271 25.126 12.286 11.022 

  5  44.134 27.457 19.855 17.905 

Vo and Lee [177] (No shear)  1  16.289 8.525 3.691 3.330 

 2  18.362 10.172 4.854 4.346 

 3  44.903 23.499 10.175 9.180 

 4  47.279 26.604 12.342 11.079 

  5  50.406 31.022 19.946 17.996 
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Table 6.11. Non-dimensional critical buckling load of thin-walled composite I-beams  

BC Reference Lay-up 

   0  30 /

30

 
  

 
60 /

60

 
  

 
90 /

90

 
  

 

S-S Present (Shear) 11.947 3.336 0.626 0.510 

 Present (No shear) 12.208 3.344 0.627 0.510 

C-F Present (Shear) 3.035 0.835 0.157 0.128 

 Present (No shear) 3.052 0.836 0.157 0.128 

C-C Present (Shear) 44.914 13.249 2.498 2.034 

 Present (No shear) 48.830 13.374 2.507 2.041 

The shear effects of I-beams with  15 / 15  angle-ply in flanges for various BCs 

are conducted. Figs. 6.5 and 6.6 show the shear effects of fundamental frequencies 

and critical buckling load with respect to length-to-height’s ratio, respectively. It can 

be seen that the shear effects are biggest for beams with C-C BC, and are significant 

for beams with small length-to-height’s ratio. 

 

Figure 6.5. Shear effect on the fundamental frequency for various BCs 
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Figure 6.6. Shear effect on the critical buckling loads for various BCs 

In order to clearly investigate the shear effects and fibre angle to the natural 

frequencies, the above composite I-beams with different geometry and material 

properties (MAT I, 1 2 3 30 cmb b b   , 1 2 3 2 cmh h h   and 310L b ) are 

considered. Fig. 6.7 displays the shear effects on first three frequencies of beams for 

C-C BC. It is clear to see that the shear effects are significant for high modes. It is 

also interesting to see that the shear effects on third mode (mode V ) are smallest at 

fiber angle 055 . This phenomenon can be explained in Fig. 6.8 which shows the ratio 

of flexural rigidity ( 33E ) to shear rigidity ( 77E ) with respect to  . It is observed that 

the ratio of 33 77/E E  is the smallest at this angle ( 055 ).  
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Figure 6.7. Shear effect on first three natural frequencies of thin-walled C-C I-beams 

 

Figure 6.8. Variation of 33 77/E E  ratio with respect to  
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Figs. 6.9-6.11 also show first three mode shapes of C-C I-beams with  45 / 45  

angle-ply in flanges with shear and without shear effect. It can be seen that the 

vibration modes 1, 2 and 3 are first flexural mode in x  direction (mode U ), torsional 

mode (mode  ) and flexural mode in y  direction (mode V ), respectively.  

 

            a. 1 6.049   (Shear)                      b. 1 6.239   (No shear) 

Figure 6.9. Mode shape 1 of thin-walled C-C I-beams 

 

                 a. 2 6.383   (Shear)   b. 2 6.596   (No shear) 

Figure 6.10. Mode shape 2 of thin-walled C-C I-beams 
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a. 3 10.607   (Shear)     b. 3 12.555   (No shear) 

Figure 6.11. Mode shape 3 of thin-walled C-C I-beams 

6.3.2.3. Anisotropic effect 

The third example investigates the effect of modulus ratio 1 2/E E  on natural 

frequencies and critical buckling loads of composite I- beams (MAT II.6, 

1 2 20 cmb b  , 3 30 cmb  , 1 2 3 1 cmh h h    and 320L b ) with various BCs. The 

flanges are symmetric cross-ply  0 / 90
s
 lay-up and the web is unidirectional one. 

The variation of fundamental frequencies and critical buckling loads in case of 

including shear effects with respect to the ratio of 1 2/E E  is displayed in Figs. 6.12 

and 6.13. It is observed that the results increase as 1 2/E E  increases for all BCs, and 

the beams with C-C BC have the biggest variation. 



128 
 

 

Figure 6.12. Non-dimensional fundamental frequency for various BCs 

 

Figure 6.13. Non-dimensional critical buckling load for various BCs 
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6.3.3. Functionally graded sandwich I-beams. 

6.3.3.1. Verification 

This example assesses the accuracy and efficiency of the present solution for thin-

walled FG sandwich I-beams. Non-dimensional fundamental frequencies of S-S 

beams (MAT III.6, 1 20b h , 2 10b h , 3 40b h , 1 2 3h h h h   , 1 0.1  , 2 0.9   

and 340L b ) with 1p   and 5p   are displayed in Fig 14. The critical buckling load 

of I-beams (MAT IV.6, 1 2 10 cmb b  , 3 20 cmb  , 1 2 3 0.5 cmh h h   , 

1 2 0.7, 0.4      and 312.5L b ) with different BCs is printed in Table 6.12. It 

can be found that the present solutions are in good agreements with previous results 

of Nguyen et al. [192], Lanc et al. [193] and Kim and Lee [194]. Results in Table 

6.12 also indicated that the critical buckling loads decrease as material parameter p  

increases.  

 

Figure 6.14. Non-dimensional fundamental frequency of thin-walled FG sandwich 

I-beams. 
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Table 6.12. The critical buckling load (N) of FG sandwich I-beams  

BC p   Reference   

  Present Kim and Lee [194] 
Lanc et 

al. [193] 

  Shear No shear Shear No shear No shear 

S-S 0 421633 423079 422359 423083 423296 

 0.25 404154 405602 405208 405933 406130 

 0.5 392508 393960 393783 394515 394692 

 1 377958 379420 379533 380286 380412 

 2 363420 364899 365280 366056 366150 

 5 348899 350404 351058 351825 351914 

 10 342305 343826 344601 345333 345451 

 20 338539 340070 340906 341605 341762 

C-F 0 105679 105770 105725 105771 105773 

 0.25 101310 101401 101435 101483 101484 

 0.5 98399 98490 98577 98629 98626 

 1 94763 94855 95013 95072 95057 

 2 91132 91225 91448 91514 91494 

 5 87507 87601 87891 87957 87936 

 10 85861 85957 86277 86334 86321 

 20 84922 85018 85353 85403 85400 

C-C 0 1669413 1692317 1680840 1692352 1705050 

 0.25 1599491 1622408 1612410 1623751 1635900 

 0.5 1552860 1575838 1566830 1578078 1589830 

 1 1494551 1517678 1509950 1521156 1532310 

 2 1436213 1459595 1453060 1464229 1474860 

 5 1377838 1401613 1396270 1407293 1417520 

 10 1351288 1375299 1370490 1381317 1391480 

 20 1336111 1360275 1355730 1366399 1376630 
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6.3.3.2. Parameter study 

In order to investigate the effects of thickness ratio of ceramic material on free 

vibration and buckling behaviours, the FG sandwich I-beams (MAT III.6, 

1 2 30b b h  , 3 40b h , 1 2 3h h h h    and 310L b ) are considered. Figs. 6.15 and 

6.16 show the effect of ceramic thickness ratio in flanges on the non-dimensional 

fundamental frequencies and critical buckling loads of beams with 0.3   and 

10p   for the different BCs. It can be seen that frequencies and critical buckling load 

significantly increase as ceramic thickness ratio increases.  

 

Figure 6.15. Non-dimensional fundamental frequency with respect to 1 2,    ( 1 2 

, 0.3   and 10p  ) 
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Figure 6.16. Non-dimensional critical buckling load with respect to 1 2,   ( 0.3   

and 10p  ) 

Figs. 6.17 and 6.18 show the non-dimensional fundamental frequencies and critical 

buckling loads of beams ( 1 2 0.1    and 10p  ) with respect to the ceramic 

thickness ratio in web for different BCs. It is observed that increasing of ceramic 

thickness ratio in web causes slightly decrease fundamental frequencies, and slightly 

increase critical loads. 
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Figure 6.17. Non-dimensional fundamental frequency with respect to    

( 1 2 0.1   ,  and 10p  ) 

 

Figure 6.18. Non-dimensional critical buckling load with respect to    

( 1 2 0.1   ,  and 10p  ) 
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6.3.3.3. Shear deformation effect 

The FG sandwich I-beams (MAT III.6, 1 2 3 20b b b h   , 1 2 3h h h h   , 

1 2 0.1     ) are considered to investigate the effects of shear deformation. Figs. 

6.19 and 6.20 show shear effect on fundamental frequencies and critical buckling 

loads of beams with 1p   and with respect to the length-to-height ratio. From these 

figures, it can be seen that the shear effects decrease as the length-to-height ratio 

increases as expected. Effects of the material parameter on the shear effects of the C-

C I-beams with 310L b  are indicated in Fig. 6.21. It can be seen that the shear effect 

is significant with high modes, and is not effected by the material parameter for first 

three vibration modes.  

 

Figure 6.19. Shear effect on fundamental frequency for various BCs 
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Figure 6.20. Shear effect on critical buckling load for various BCs 
 

 

Figure 6.21. Shear effect on first three frequency of C-C I-beams with respect to 

material parameter 
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6.3.4. Composite channel-beams 

y

z

x

b1

b2

b3

h1

h2

h3

 

Figure 6.22. Geometry of thin-walled composite channel beams 

The following section aims to present the results of composite channel beams. 

Firstly, the symmetric angle-ply channel beams (MAT IV.6) with the various BCs are 

considered. The flanges and web are 0.0762 cm thickness, and made of asymmetric 

laminates that consist of 6 layers (  
3

/  ). The first five natural frequencies of 

channel beams ( 1 2 0.6 cmb b  , 3 2.0 cmb   and 3100L b ) in case of no shear are 

showed in Table 6.13. It can be seen that the present results are coincided with existing 

ones. Secondly, the buckling load and deflection at mid-span of composite channel 

beams (MAT.6 V 1 2 3 10cmb b b   , 1 2 3 1.0 cmh h h    and 320L b ) are showed in 

Table 6.14 and compared with Cortinez and Piovan [204]. Good agreement are also 

found. Finally, the effects of shear deformation are investigated by considering 

composite channel beams (MAT III.6, 1 2 3 10cmb b b   , 1 2 3 1.0 cmh h h   ).  Figs. 

6.23 and 6.24 show shear effect on fundamental frequencies and critical buckling 

loads of beams with respect to the length-to-height ratio. From these figures, it can be 

seen that the shear effects are the biggest for beams with C-C BC, and are significant 

for beams with small length-to-height’s ratio as expected. 
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Table 6.13. First five frequencies (Hz) of thin-walled channel beams 

Reference Frequency Lay-up 

   0  15 /

15

 
  

 
30 /

30

 
  

 
45 /

45

 
  

 
60 /

60

 
  

 
75 /

75

 
  

 
90 /

90

 
  

 

a. S-S BC       

Present   1  7.031 6.327 4.291 2.723 2.087 1.889 1.846 

 2  24.460 25.013 17.098 10.872 8.345 7.774 7.384 

 3  28.125 25.678 17.911 11.436 8.777 7.940 7.758 

  4  36.119 43.319 38.512 24.471 18.779 16.997 16.614 

  5  59.497 56.746 47.443 40.503 33.370 30.220 29.099 

b. C-F BC         

Present  1  2.505 2.250 1.525 0.969 0.743 0.673 0.658 

 2  10.061 9.488 6.462 4.101 3.142 2.840 2.773 

 3  15.698 14.093 9.555 6.070 4.658 4.216 4.121 

  4  16.616 21.506 23.900 16.997 13.043 11.806 11.539 

  5  43.954 39.451 26.753 20.358 16.982 15.118 14.536 

c. C-C BC        

Present  1  15.939 14.324 9.707 6.165 4.730 4.281 4.184 

 2  32.704 39.350 26.752 16.993 13.038 11.801 11.535 

 3  43.937 41.325 37.226 25.020 19.365 17.494 17.066 

  4  71.670 68.160 52.443 33.313 25.560 23.135 22.613 

  5  73.718 77.287 55.748 44.633 36.871 32.659 31.342 

Sheikh et 

al. [189]  

 1  15.931 14.345 9.781 6.174 4.708 4.281 4.121 

 2  32.692 39.532 26.959 17.018 12.977 11.802 11.359 

 3  43.890 40.662 37.271 25.031 19.262 17.485 16.798 

 4  71.641 68.182 52.854 33.367 25.444 23.140 22.272 

  5  73.098 77.480 55.454 44.278 36.631 32.689 30.903 
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Table 6.14. Buckling load (N) and deflection (mm) at mid-span under uniformly load 

of 1 kN of thin-walled channel beams 

BC Reference Lay-up  

  (00/00/00/00) (00/900/900/00) 

a. Buckling load (105N)   

S-S Present 2.617 1.595 

 Cortinez and Piovan [204] 2.674 1.635 

C-F Present 0.929 0.656 

 Cortinez and Piovan [204] 0.947 0.670 

C-C Present 9.310 5.240 

 Cortinez and Piovan [204] 9.503 5.371 

b. Deflection (mm)   

S-S Present 0.247 0.463 

C-F  0.841 1.573 

C-C  0.049 0.093 

 

Figure 6.23. Shear effect on fundamental frequency for various BCs 
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Figure 6.24. Shear effect on critical buckling load for various BCs 

6.4. Conclusions 

Ritz method is developed to analyse buckling, vibration and bending of thin-

walled composite and FG sandwich thin-walled beams in this Chapter. The theory is 

based on the FOBT. The governing equations of motion are derived from Lagrange’s 

equations. The natural frequencies, critical buckling loads and deflection of thin-

walled composite and FG sandwich beams with various BCs are obtained and 

compared with those of the previous works. The results indicate that: 

- The shear effects become significant for higher degrees and lower length-to-

height ratio of thin-wall beams. 

- The shear effects are the biggest for thin-walled beams with clamped-clamped 

boundary conditions. 

- The effects of fiber orientation are significant for bending, buckling and free 

vibration behaviours of thin-walled beams.  
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- The proposed functions are found to be appropriate and efficient in analysing 

buckling, free vibration and bending problems of thin-walled beams with 

various cross-sections  
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 Chapter 7.  CONVERGENCY, ACCURARY AND NUMERICAL 

STABILITY OF RITZ METHOD  

7.1. Introduction 

In Chapter Two to Six, the author proposed Ritz functions to analyse behaviours 

of laminated composite beams with various cross-sections. It can be seen that the 

proposed methods are very simple and effective. It is also stated that convergency, 

accuracy and numerical stability of Ritz method depends on approximation functions. 

Therefore, it is very essential to study their characteristics. In this Chapter, four 

approximation functions which used in previous Chapters (Table 7.1 and 7.2) for S-

S and C-C boundary condition are considered. For comparison purposes, orthogonal 

polynomials (OP) function, which is well-known and  used in a large number of work, 

is considered. Numerical results are presented for laminated composite beams 

(00/900/00) with rectangular section based on HOBT as indicated in Eqs. (2.1 and 2.2). 

The computations are carried out in an  Intel® Core™ i7 with 4 cores at 3.4 GHz, 8 

GB of RAM, and calculations in MATLAB R2015a. The governing equations of 

motion are given below: 

 

11 12 13 11 12 13

12 22 23 2 12 22 23

13 23 33 13 23 33

T T

T T T T



        
        

        
              

0

0

1

uK K K M M M 0

K K K K M M w F

K K K K M M 0u

 (7.1) 

where the components of stiffness matrix K, mass matrix M and F are given by:  

11
, ,

0

L

ij i x j xK A dx   , 12
, ,

0

L

ij i x j xxK B dx    , 13
, ,

0

L
s

ij i x j xK B dx    

22
, , 0 , ,

0 0

L L

ij i xx j xx i x j xK D dx N dx      , 23
, ,

0

L
s

ij i xx j xK D dx    ,  

33
, ,

0 0

L L
s s

ij i x j x i jK H dx A dx       , 11
0

0

L

ij i jM I dx  , 12
1 ,

0

L

ij i j xM I dx     

13
1

0

L

ij i jM J dx    , 22
0 2 , ,

0 0

L L

ij i j i x j xM I dx I dx     , 23
2 ,

0

L

ij i x jM J dx    ,  
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33
2

0

L

ij i jM K dx   ,  
0

L

i iF q dx                                                                                             (7.2)  

It is stated that for H1, H2 and EX functions, owing to ,i i i x    , the number 

of integral calculated will be reduced from thirteen to three. Therefore, the 

components of stiffness matrix K, mass matrix M can be writen: 

 11
1

0

L

ijK A IT dx  , 12
1

0

L

ijK B IT dx   , 13
1

0

L
s

ijK B IT dx   

22
1 0 2

0 0

L L

ijK D IT dx N IT dx   , 23
1

0

L
s

ijK D IT dx   ,  

33
1 2

0 0

L L
s s

ijK H IT dx A IT dx    , 11
0 2

0

L

ijM I IT dx  , 12
1 2

0

L

ijM I IT dx    

13
1 2

0

L

ijM J IT dx   , 22
0 3 2 2

0 0

L L

ijM I IT dx I IT dx   , 23
2 2

0

L

ijM J IT dx   ,  

33
2 2

0

L

ijM K IT dx                                                                                                                          (7.3)  

where 1 , ,i xx j xxIT   , 2 , ,i x j xIT   , 3 i jIT  .  

The orthotropic material and normalized terms are used as followings: 

  1 2/ 25E E  , 12 13 20.5G G E  , 23 20.2G E , 12 0.25   (7.4) 

 
3

0 2
4

100w E bh
w

qL
  (7.5) 

 
2

2

L

h E

 
    (7.6) 

 
2

3
2

cr cr

L
N N

E bh
   (7.7) 
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Table 7.1. Approximation functions for S-S boundary condition 

Function ( )j x  ( )j x  ( )j x  Name 

Orthogonal 

polynomials 

[100]  

1
j

x x

L L

   
   

   
 

1

1
j

x x

L L


   

   
   

 
1

1
j

x x

L L


   

   
   

 OP-S 

Trigonometric 

(Chapter Two) 

[130] 

sin
j x

L

 
 
 

 cos
j x

L

 
 
 

 cos
j x

L

 
 
 

 TR-S 

Hybric function 

(Chapter Four) 

[196] 

 
x

jLx L x e  , ( )j x x  , ( )j x x  H1-S 

Exponential 

function 

(Chapter Five) 

[197] 

1

1 1
xjx j
LLe e

    
 

  
      

 , ( )j x x  , ( )j x x  EX-S 

Hybric function 

(Chpater Six) 

[205] 

1
jx

L
x x

e
L L


 
 

 
 , ( )j x x  , ( )j x x  H2-S 
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Table 7.2. Approximation functions for C-C boundary condition 

Function ( )j x  ( )j x  ( )j x  Name 

Orthogonal 

polynomials 

[100]  

2 2 1

1
j

x x x

L L L


     

     
     

 
2 1

1
j

x x x

L L L


    

    
    

 
2 1

1
j

x x x

L L L


    

    
    

 OP-C 

Trigonometric 

(Chapter 

Two) [130] 

2sin
j x

L

 
 
 

 
2

sin
j x

L

 
 
 

 
2

sin
j x

L

 
 
 

 TR-C 

Hybric 

function 

(Chapter 

Four) [196] 

 
22

x

jLx L x e  , ( )j x x  , ( )j x x  H1-C 

Exponential 

function 

(Chapter 

Five) [197] 

22
1

1 1
xjx j
LLe e

    
 

  
        

 , ( )j x x  , ( )j x x  EX-C 

Hybric 

function 

(Chapter Six) 

[205] 

2 2

1
jx

L
x x

e
L L


   

   
   

 , ( )j x x  , ( )j x x  H2-C 

 

7.2. Results of comparative study 

7.2.1. Convergence  

To study the convergence of approximation functions, the reference distance is 

defined as: 

 1f i id R R    (7.8) 

where iR  and 1iR   are results of fundamental frequency, critical buckling load or 

deflection  of beams at im  and 1im  , respectively. 
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                 a. S-S boundary condition                         

 

                                                      b. C-C boundary condition 

Figure 7.1. Distance of fundamental frequency  

Fig. 7.1 shows convergence of approximation functions for vibration analysis. It 

can be seen that for S-S boundary condition, TR function has the best convergence. 

OP function has the lowest convergence for both S-S and C-C boundary conditions. 

EX function converges better than H1 and H2 functions for both S-S and C-C 

boundary conditions.  

L
o

g
(|

d
f|)
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a. S-S boundary condition 

 

b. C-C boundary condition 

Figure 7.2. Distance of critical buckling load 

Convergence of approximation functions for buckling analysis is displayed in Fig. 

7.2. TR function has the best convergence rate, and OP function  has the lowest 

convergence for both S-S and C-C boundary conditions. Again, EX function 

converges better than H1 and H2 functions for both S-S and C-C boundary 

conditions. 

d
f
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                                                 a. S-S boundary condition                         

 

b. C-C boundary condition 

Figure 7.3. Distance of deflection  

Fig. 7.3 displays convergence rate of approximation functions for static analysis. 

It can be stated that EX function has the best convergence rate whisle OP and TR 

functions have low covergence for both S-S and C-C boundary conditions. 

Table 7.3 shows convergence point (m) of approximation functions. It can be seen 

that for S-S boundary conditions, presented functions converge faster than published 

functions for both vibration and buckling analysis. For C-C boundary condition, 

present results converge faster than those of Nguyen et al.[98] and Mantari and 

Canales [44], but lower than those of Aydogdu [100].   
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Table 7.3. Convergence studies of approximation functions 

Reference m 

 S-S C-C 

1.Vibration analysis   

Present (TR) 2 12 

Present (H1) 6 12 

Present (H2) 6 10 

Present (EX) 6 6 

Aydogdu (Orthogonal polynomials ) [100] 8 8 

Nguyen et al. (Polynomials) [98] 14 14 

Mantari and Canales (Hybrid) [44] 30 80 

2. Buckling analysis   

Present (TR) 2 2 

Present (H1) 6 12 

Present (H2) 6 10 

Present (EX) 6 6 

Aydogdu (Orthogonal polynomials ) [48] 8 - 

Nguyen et al. (Polynomials) [98] 14 14 

Mantari and Canales (Hybrid) [44] 12 12 

 

7.2.2. Computational time 

Computational time for frequency, critical buckling load and deflection of beams 

are shown in Figs. 7.4-7.6.  

For S-S boundary condition: H1 function is less computational cost than other 

fuctions for both bending, buckling and vibration analysis;  H2 and EX functions 

have low computational cost for bending and buckling analysis, but are the highest 

for vibration analysis; TR function is the highest computational cost for bending and 

buckling analysis.  
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                 a. S-S boundary condition                        b. C-C boundary condition 
Figure 7.4. Elapsed time to compute frequency  

 

                 a. S-S boundary condition                        b. C-C boundary condition 
Figure 7.5. Elapsed time to compute critical buckling load 

 

                 a. S-S boundary condition                        b. C-C boundary condition 
Figure 7.6. Elapsed time to compute deflection 
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For C-C boundary condition: TR function is the highest computational cost for 

bending, buckling and vibration analysis.  

It can be seen that C-C boundary condition has more computational cost than S-S 

boundary condition for all functions. 

7.2.3. Numerical stability 

One of method to assess the numerical stability is to consider the coefficient 

maximum eigenvalue/minimum eigenvalue. This coefficient increases linearly as 

evidence for the numerical stability [206, 207]. The results can be seen in Fig. 7.7. It 

can be seen that the coefficient is monotonically increasing for OP, TR, H1 and H2 

functions. EX function has parabolic shape. From Fig.7.7, it can be stated that TR is 

the best for numerical stability term.   

 

                 a. S-S boundary condition                        b. C-C boundary condition 

Figure 7.7. Maximun eigen value-to-Minimun eigen value ratio 

7.3. Conclusions 

Five approximation functions for S-S and C-C boundary conditions were tested 

to study their performance in terms of convergence, computational time and stability. 

All proposed functions are suitable for predicting behaviours of laminated composite 

beams.  Some conclusions are as follows: 

- In terms of computational cost, H1 function is recommended for bending, 

buckling and vibration analysis of beams. H2 and EX functions are also 
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recommended for bending, buckling analysis, and to be limited use in 

vibration analysis. OP function can be also recommended for vibration 

analysis because computational cost is just more than H1 function. TR 

function is recommened to be limited use in C-C boundary condition. 

- Regarding the convergence, TR function is recommended for buckling 

analysis. EX function is also better than remaining functions for all behaviours 

and boundary conditions. OP function is not recommended due to low 

convergence rate, especially bending analysis.  

-  All functions present evidences of numerical stability. The TR function has 

very good numerical behavior.  

- Considering all the three numerical features, the H1 function is recommended 

for bending, buckling and vibration analysis, TR function is suitable for 

buckling, vibration analysis, and can be used with some necessary cautions 

about the numerical stability. While EX function should be discarded as 

appropriate for the computation of higher natural frequencies. 
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 Chapter 8.  CONCLUSIONS AND RECOMMENDATIONS  

8.1. Conclusions 

In this thesis, the new approximation functions are proposed to analyse free 

vibration, buckling and bending of of laminated composite beams with various cross- 

section such as rectangular and thin-walled beams. FOBT, HOBT and quasi-3D 

theories combined with modified couple stress theory are used for macro beams and 

microbeams. The governing equations of motion are derived by using Lagrange 

equations. The convergence and verification studies are carried out to demonstrate 

the accuracy of the proposed solution. Poisson’s effect is considered in constitutive 

equations. Numerical results are presented to investigate the effects of length-to-

height ratio, fibre angle and material anisotropy on the deflections, stresses, natural 

frequencies and critical buckling loads of composite beams. According to the results 

of the present work, the following conclusions can be drawn: 

- The new approximation functions are simple and effective for analysis both 

retangular and thin-walled laminated composite beams. 

- The effects of length-to-height ratio, fibre angle and material anisotropy on 

the deflections, stresses, natural frequencies and critical buckling load are 

significant. 

- The Poisson’s effects are important, which cannot be ignored, on behaviours 

of arbitary angle beams but less significant on cross-ply ones. 

- The shear deformation effects become significant for lower length-to-height 

ratio, higher degrees of anisotropy of thin-walled composite beams.  

8.2. Recommendations 

The following are recommendations concerning the extension of the proposed for 

the future research: 

- The new approximation functions can be applied to analyse behaviours of 

composite plates. 
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- The present method can be combined with Lagrange multiplier, penalty 

method and finite element method to achieve 3D solutions and more complex 

geometrices and boundary conditions. 

- Analysis of curved composite beams can be developed by extending present 

methods. 

- A nonlinear model based on large displacements, rotations and Ritz method 

should be considered for analysis of rectangular and thin-walled composite 

beams. 
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APPENDIX A 

The coefficients in Eq. (1.19) 

23 32
11

2 3

1
C

E E

 



, 21 31 23 12 32 13

12

2 3 1 3

C
E E E E

      
 

 
, 31 21 32 13 12 23

13

2 3 1 2

C
E E E E

      
 

 
 (A.1) 

13 31
22

1 3

1
C

E E

 



, 32 12 31 23 21 13

23

1 3 1 2

C
E E E E

      
 

 
, 12 21

33

1 2

1
C

E E

 



, 44 23C G , 55 13C G  (A.2) 

66 12C G , 12 21 23 32 31 13 21 32 13

1 2 3

1 2

E E E

           
   (A.3) 

The coefficients in Eq. (1.20) 

1
11

12 211

E
Q

 



, 12 2

12

12 211

E
Q



 



, 2

22

12 211

E
Q

 



, 44 23Q G , 55 13Q G , 66 12Q G  (A.4) 

The coefficients in Eqs. (1.21) and (1.22) 

  4 2 2 4
11 11 12 66 22cos 2 2 sin cos sinQ Q Q Q Q        (A.5) 

    2 2 4 4
12 11 22 66 124 sin cos sin cosQ Q Q Q Q         (A.6) 

    3 3
16 11 12 66 12 22 662 sin cos 2 sin cosQ Q Q Q Q Q Q          (A.7) 

  4 2 2 4
22 11 12 66 22sin 2 2 sin cos cosQ Q Q Q Q        (A.8) 

    3 3
26 11 12 66 12 22 662 sin cos 2 sin cosQ Q Q Q Q Q Q          (A.9)

2 2
44 44 55cos sinQ Q Q   ,  45 55 44 sin cosQ Q Q    , 2 2

55 44 55sin cosQ Q Q    (A.10) 

    2 2 4 4
66 11 22 12 66 662 2 sin cos sin cosQ Q Q Q Q Q          (A.11) 

The coefficients in Eq. (1.23) 

  4 2 2 4
11 11 12 66 22cos 2 2 sin cos sinC C C C C        (A.12) 

    2 2 4 4
12 11 22 66 124 sin cos sin cosC C C C C         (A.13) 

 2 2
13 13 23cos sinC C C    (A.14) 

    3 3
16 11 12 66 12 22 662 sin cos 2 sin cosC C C C C C C          (A.15) 

  4 2 2 4
22 11 12 66 22sin 2 2 sin cos cosC C C C C        (A.16) 

 2 2
23 13 23sin cosC C C    (A.17) 

    3 3
26 11 12 66 12 22 662 sin cos 2 sin cosC C C C C C C         , 33 33C C  (A.18) 
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  36 13 23 sin cosC C C    , 2 2
44 44 55cos sinC C C     (A.19) 

  45 55 44 sin cosC C C    , 2 2
55 44 55sin cosC C C    (A.20) 

    
22 2 2 2

66 11 22 12 662 sin cos cos sinC C C C C         (A.21) 

The coefficients in Eq. (1.24) 

 
2 2
16 22 12 16 26 12 66

11 11 2
26 22 66

2C C C C C C C
C C

C C C

 
 


 (A.22) 

 16 22 36 12 23 66 16 23 26 12 26 36
13 13 2

26 22 66

C C C C C C C C C C C C
C C

C C C

  
 


 (A.23) 

 
2 2
36 22 23 26 36 23 66

33 33 2
26 22 66

2C C C C C C C
C C

C C C

 
 


 (A.24) 

 
2
45

55 55

44

C
C C

C
   (A.25) 

The coefficients in Eq. (1.25) 

 
2

* 13
11 11

33

C
C C

C
  , *

55 55C C   (A.26) 

The coefficients in Eq. (3.3) 

 * 2 * 2
1 2cos sinx        (A.27) 

 * 2 * 2
1 2sin cosy        (A.28) 

  * *
2 1 sin cosxy       (A.29) 
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APPENDIX B 

The coefficients in Eq. (6.48) 

11 11

s

E A ds  ,  12 11 11 sin
s

E A y B ds   ,  13 11 11 cos
s

E A z B ds                               (B.1) 

 14 11 11

s

E A B q ds  , 15 16

s

E B ds  , 16 16 cos
s

E A ds  , 17 16 sin
s

E A ds   (B.2) 

18 16

s

E A rds  ,  2 2
22 11 11 112 sin sin

s

E A y B y D ds     (B.3)

  23 11 11 11sin cos sin cos
s

E A yz B z y D ds        (B.4) 

  24 11 11 11sin sin
s

E A y B qy D q ds       ,  25 16 16 sin
s

E B y D ds   (B.5) 

 26 16 16 sin cos
s

E A y B ds   ,  27 16 16 sin sin
s

E A y B ds    (B.6) 

 28 16 16 sin
s

E A y B rds  ,  2 2
33 11 11 112 cos cos

s

E A z B z D ds     (B.7) 

  34 11 11 11cos cos
s

E A z B qz D q ds       ,  35 16 16 cos
s

E B z D ds   (B.8) 

 36 16 16 cos cos
s

E A z B ds   ,  37 16 16 cos sin
s

E A z B ds    (B.9) 

 38 16 16 cos
s

E A z B rds  ,  2 2
44 11 11 112

s

E A B q D q ds                                       (B.10)  

 45 16 16

s

E B D q ds  ,  46 16 16 cos
s

E A B q ds   ,  47 16 16 sin
s

E A B q ds    (B.11) 

 48 16 16

s

E A B q rds  55 66

s

E D ds  , 56 66 cos
s

E B ds  , 57 66 sin
s

E B ds   (B.12) 

58 66

s

E B rds  , 58 66

s

E B rds  ,  2 2
66 66 55cos sin

s

E A A ds    (B.13) 

  67 66 55 sin cos
s

E A A ds   ,  68 66 55cos sin
s

E A r A q ds    (B.14) 

 2 2
77 66 55sin cos

s

E A A ds   ,  78 66 55sin cos
s

E A r A q ds  

,  2 2
88 66 55

s

E A r A q ds   (B.15) 
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where    * 2, , 1, ,ij ij ij ij

n

A B D Q n n dn    (B.16) 

The coefficients in Eq. (6.51) 

0 0

s

m I ds  , 1 cosc

s

m I ds  , 1r

s

m I rds  ,  2 2
0p

s

m I r q ds  , 1q

s

m I qds   (B.17) 

1 sins

s

m I ds  , 0

s

m I ds   , 2 2

s

m I ds  ,  2
2 2 cosc

s

m I ds  , 2
2 2 sins

s

m I ds  (B.18) 

2
2 2q

s

m I q ds  , 2
2 0y

s

m I y ds  , 2
2 0z

s

m I z ds  , 2
2 0

s

m I ds   , 2 sin coscs

s

m I ds   (B.19) 

2 cosqc

s

m I q ds  , 2 sinqs

s

m I q ds  , 1 sinys

s

m I y ds  , 1 coszc

s

m I z ds   (B.20) 

1q

s

m I q ds   , 0y

s

m I y ds   , 0z

s

m I z ds   , 1 cosc

s

m I ds     (B.21) 

1 sins

s

m I ds    ,  1 sin cosyzcs

s

m I z y ds   ,  1 siny qs

s

m I qy ds     (B.22) 

 1 cosz qc

s

m I qz ds      (B.23) 

where    2
0 1 2, , 1, ,

n

I I I n n dn    (B.24) 
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